ARTIFICIAL
INTELLIGENCE
AND LEGAL
ANALYTICS

New Tools for Law Pracrtice
in the Digital Age

Kevin D. Ashiei

-

ARTIFICIAL INTELLIGENCE AND LEGAL ANALYTICS

New Tools for Law Practice in the Digital Age

The field of artificial intelligence (Al) and the law is on the cusp of a revolution that began
with text analytic programs like IBM’s Watson and Debater and the open-source informa-
tion management architectures on which they are based. Today, new legal applications
are beginning to appear, and this book — designed to explain computational processes
to non-programmers — describes how they will change the practice of law, specifically
by connecting computational models of legal reasoning directly with legal text, generat-
ing arguments for and against particular outcomes, predicting outcomes, and explaining
these predictions with reasons that legal professionals will be able to evaluate for them-
selves. These legal apps will support conceptual legal information retrieval and enable
cognitive computing, enabling a collaboration between humans and computers in which
each performs the kinds of intelligent activities that they can do best. Anyone interested
in how Al is changing the practice of law should read this illuminating work.

Dr. Kevin D. Ashley is a Professor of Law and Intelligent Systems at the University of
Pittsburgh, Senior Scientist, Learning Research and Development Center, and Adjunct
Professor of Computer Science. He received a B.A. from Princeton University, a JD
from Harvard Law School, and Ph.D. in computer science from the University of Mas-
sachusetts. A visiting scientist at the IBM Thomas J. Watson Research Center, NSF
Presidential Young Investigator, and Fellow of the American Association for Artificial
Intelligence, he is co-Editor-in-Chief of Artificial Intelligence and Law and teaches in
the University of Bologna Erasmus Mundus doctoral program in Law, Science, and
Technology.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

Artificial Intelligence and Legal Analytics

NEW TOOLS FOR LAW PRACTICE IN
THE DIGITAL AGE

KEVIN D. ASHLEY
University of Pittsburgh School of Law

CAMBRIDGE

UNIVERSITY PRESS

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

CAMBRIDGE

UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi — 110002, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/g781107171503
DOI: 10.1017/9781316761380

© Kevin D. Ashley 2017
This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2017

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.
Library of Congress Cataloging-in-Publication Data

ISBN 978-1-107-17150-3 Hardback
ISBN ¢78-1-316-62281-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

For Alida, forever

MOE'S

law office

SHAHAWY&PARTNERS

ATTORNEYS AT LAW

FOLLOW US ON LINKIDIN FOR
MORE LEGAL RESOURCES m

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core
Eram
Stamp

Contents

List of illustrations
List of tables
Acknowledgments

PART I COMPUTATIONAL MODELS OF LEGAL REASONING

1 Introducing Al & Law and Its Role in Future Legal Practice

1.1.

1.2.

1.3.

1.4.

L5.

1.6.

Introduction

Al & Law and the Promise of Text Analytics

New Paradigms for Intelligent Technology in Legal Practice

1.3.1. Former Paradigm: Legal Expert Systems

1.3.2. Alternative Paradigms: Argument Retrieval and Cognitive
Computing

1.3.3. Toward the New Legal Apps

What Watson Can and Cannot Do

1.4.1. IBM’s Watson

1.4.2. Question Answering vs. Reasoning

1.4.3. IBM’s Debater Program

1.4.4. Text Analytic Tools for Legal Question Answering

1.4.5. Sources for Text Analytic Tools

A Guide to This Book

1.5.1. Part I: Computational Models of Legal Reasoning

1.5.2. PartII: Legal Text Analytics

1.5.3. Part III: Connecting Computational Reasoning Models
and Legal Texts

Implications of Text Analytics for Students

page xv
XX1

xxiil

O NP ww

14
14
15
18
23
27
30
31
32
33

34
35

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

viii

2

Contents

Modeling Statutory Reasoning

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

Introduction

Complexities of Modeling Statutory Reasoning

2.2.1. Semantic Ambiguity and Vagueness

2.2.2. Syntactic Ambiguity

Applying Statutory Legal Rules Deductively

2.3.1. Running a Normalized Version on a Computer
2.3.2. Predicate Logic

2.3.3. Syntactic Ambiguity as Design Constraint

2.3.4. The BNA Program

2.3.5. Some Problems of Translating Statutes into Programs
The Complexity of Statutory Interpretation and the Need for
Arguments

2.4.1. A Stepwise Process of Statutory Interpretation

2.4.2. Other Sources of Legal Indeterminacy
Management Systems for Business Rules and Processes
2.5.1. Business Process Expert Systems

2.5.2. Automating Business Process Compliance

2.5.3. Requirements for a Process Compliance Language
2.5.4. Connecting Legal Rules and Business Processes
2.5.5. Example of Business Process Compliance Modeling
Representing Statutory Networks

Modeling Case-based Legal Reasoning

3.1
3.2.

33

35

3.0.

Introduction

Relationship of Legal Concepts and Cases

3.2.1. The Legal Process

3.2.2. 'The Legal Process lllustrated

3.2.3. Role of Legal Concepts

Three Computational Models of Legal Concepts and Cases
3.3.1. Prototypes and Deformations

3.3.2. Dimensions and Legal Factors

3.3.3. Exemplar-based Explanations

Teleological Models of Case-based Legal Reasoning

An Approach to Modeling Teleological Reasoning

3.5.1. Teleology in Theory Construction

Design Constraints for Cognitive Computing with Case-based
Models of Legal Reasoning

Models for Predicting Legal Outcomes

4.1.
4.2.

Introduction
A Nearest Neighbor Approach to Automated Legal Prediction

100
101

104

107

107
108

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

4.3.

4.5.

4.6.

47
4.8.

Contents

Introduction to Supervised Machine Learning

4.3.1. Machine Learning Algorithms: Decision Trees

Predicting Supreme Court Outcomes

4.4.1. Features for Predicting Supreme Court Outcomes

4.4.2. Applying Supervised Machine Learning to SCOTUS
Data

4.4.3. Bvaluating the Machine Learning Method

4-4.4. Machine Learning Fvaluation Measures and Results

Predicting Outcomes with Case-based Arguments

4.5.1. Prediction with CATO

4.5.2. Issue-based Prediction

4.5.3. IBP’s Prediction Algorithm

4.5.4. BEvaluating IBP’s Predictions

Prediction with Underlying Values

Prediction based on Litigation Participants and Behavior

Prediction in Cognitive Computing

Computational Models of Legal Argument

5.1.

5.2.
53

5.4
55

5.0.

57

5.8.
5-9-

Introduction

5.1.1. Advantages of CMLAs

The Carneades Argument Model

An Extended Example of a CMLA in Action

5.3.1. Family Law Example with Carneades

5.3.2. Arguing with Defeasible Legal Rules

5.3.3. Integrating Arguing with Cases and Rules
Computational Model of Abstract Argumentation

How CMLAs Compute Winners and Losers

5.5.1. Resolving Conflicting Arguments about Facts
5.5.2. Resolving Conflicting Arguments about Values
5.5.3. Resolving Conflicting Arguments about Legal Rules
How Practical are Computational Models of Legal
Argument?

5.6.1. Role of Proof Standards in CMLAs

5.6.2. Integrating Probabilistic Reasoning into CMLAs
Value Judgment-based Argumentative Prediction Model
5.7.1. VJAP Domain Model

5.7.2. VJAP Values Underlying Trade Secret Regulation
5.7.3. VJAP Argument Schemes

5.7.4. VJAP’s Argument-based Predictions

5.7.5. VJAP Program Evaluation

Computational Model of Evidentiary Legal Argument
Computational Models of Legal Argument as a Bridge

109
110
111
112

112
13
114
114
115
115
117
119

121
123
125

127

127
128
129
131
132
134
135
139
141
142
143
144

144
145
147
149
150
151
154
156
158

160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

Contents

PART II LEGAL TEXT ANALYTICS

Representing Legal Concepts in Ontologies and Type Systems

6.1.
6.2.
6.3.

6.4.
6.5.
6.6.

6.7.

6.8.
6.9.

Introduction

Ontology Basics

Sample Legal Ontologies

6.3.1. 'The e-Court Ontology

6.3.2. van Kralingen’s Frame-based Ontology

Constructing Legal Ontologies

Ontological Support for Statutory Reasoning

Ontological Support for Legal Argumentation

0.6.1. A Target Application for Legal Argument Ontology

6.6.2. An Ontology for the Argument Microworld

6.6.3. Limits for Automating Legal Argumentation through
Ontological Support

0.6.4. Ontological Support for Cognitive Computing in Legal
Argumentation

Type Systems for Text Analytics

6.7.1. Defining a Type System

6.7.2. Type System Example: DeepOA

LUIMA: A Legal UIMA Type System

LUIMA Annotations can Support Conceptual Legal

Information Retrieval

Making Legal Information Retrieval Smarter

7.1.
7.2.
73
7.4
7-5

Introduction

Current Legal Information Retrieval Services

An Example of Using Commercial Legal IR Systems
How Legal IR Systems Work

IR Relevance Measures

7.5.1. Boolean Relevance Measure

7.5.2. Vector Space Approach to Relevance

7.5.3. Probabilistic Model of Relevance

. Assessing Legal IR Systems

Recent Developments in Legal IR Systems
Comparing Legal IR and CMLAs

. Improving Legal IR with Al & Law Approaches

7.9.1. Integrating Legal Ontologies and IR
7.9.2. Integrating Legal IR and Al & Law Relevance
Measures

171
171
172
174
174

201
202
202
203
204

208

210

210
211
212
214
216
216
217
218
221
223
226
226

227

227

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

Contents

7.9.3. Augmenting Legal IR Relevance Assessment with
Citation Networks
7.9.4. Detecting Concept Change

7.10. Conclusion

Machine Learning with Legal Texts

8.1.
§8.2.
8.3.
8.4.

8.8.

Introduction

Applying Machine Learning to Textual Data

A Basic Setup for Applying ML to Legal Texts
Machine Learning for e-Discovery

8.4.1. Litigators’ Hypotheses in e-Discovery

8.4.2. Predictive Coding Process

8.4.3. Assessing Predictive Coding Effectiveness
8.4.4. Other Open Issues in Predictive Coding
8.4.5. Unsupervised Machine Learning from Text

. Applying ML to Legal Case Texts in the History Project

8.5.1. History Project System Architecture
8.5.2. ML Algorithms: Support Vector Machines
8.5.3. History Project SVM

. Machine Learning of Case Structures
. Applying ML to Statutory Texts

8.7.1. Statutory Analysis
8.7.2. An Interactive ML Tool for Statutory Analysis
Toward Cognitive Computing Legal Apps

Extracting Information from Statutory and Regulatory Texts

9.1
9.2.

9-3.

9.4
9:5-

9.7

Introduction

Research Overview Regarding Extracting Information from
Statutory Texts

Automatically Extracting Functional Information from Statutory
Provisions

9.3.1. Machine Learning to Extract Functional Types of Provisions
9.3.2. 'Text Classification Rules to Extract Functional Information
ML vs. KE for Statutory Information Extraction

Extracting Logical Rules from Statutes and Regulations

. Extracting Requirements for Compliant Product Designs

9.6.1. Implementing Compliance with Extracted Regulations

9.6.2. Semiautomated Approaches to Improving Human
Annotation for Compliance

Extracting Functional Information to Compare Regulations

9.7.1. Machine Learning for Constructing Statutory Networks

9.7.2. Applying an ML Algorithm for Statutory Texts

xi

230
232

233

234
234
234
236
239
240
241
243
246
247
248
249
251
252
253
254
254
255
257

259
259

260

262
263
265
266
268
270
272

272
275
276
278

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

Xil

10

1

9.8.

Contents

9.7.3. Evaluating the ML Algorithm on Statutory Texts and
Dealing with Sparse Training Data
9.7.4. Applying LUIMA to Enrich Statutory Text Representation

Conclusion

Extracting Argument-Related Information from Legal Case Texts

10.1.

Introduction

10.2. Argument-Related Information in Legal Cases

10.3.

10.4.

10.5.

Extracting Legal Argument Claims

10.3.1. Machine Learning to Classify Sentences as Propositions,
Premises, and Conclusions

10.3.2. Text Representation

10.3.3. Applying Statistical Learning Algorithms

10.3.4. Argument Grammar for Discourse Tree Structure

10.3.5. Identifying Instances of Argument Schemes

Extracting Argument-Related Legal Factors

10.4.1. Three Representations for Learning from Text

10.4.2. How Well Did SMILE Work?

10.4.3. Annotating Factor Components

Extracting Findings of Fact and Cited Legal Rules

10.5.1. Applying the LUIMA Type System

10.5.2. Preparing Gold Standard Cases

10.5.3. LUIMA-Annotate

10.5.4. Evaluating LUIMA-Annotate

10.6. Annotation of Training Data

10.6.1. Annotation in IBM Debater
10.6.2. Annotation Protocols
10.6.3. Computer-Supported Annotation Environments

PART III CONNECTING COMPUTATIONAL REASONING MODELS AND
LEGAL TEXTS

Conceptual Legal Information Retrieval for

Cognitive Computing

11.1.
11.2.

11.3.

Introduction

State of the Art in Conceptual Legal IR

LUIMA Architecture

11.3.1. LUIMA-Search

11.3.2. Reranking Documents with LUIMA-Rerank

11.4. An Experiment to Evaluate LUIMA

11.4.1. Evaluation Metrics
11.4.2. LUIMA vs. CLIR

280
282
283

285
285
286
287

287
288
289
291
293
204
2094
297
208
299
299

300
301
304
305
306
308
308

313
313
315
316
316
320
321
323
324

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

11.5.

11.6.

1.7.

Contents

Continuing to Transform Legal IR into AR

11.5.1. Connecting LARCCS and Legal IR Systems

11.5.2. Querying for Cases with Extended Argument-Related
Information

11.5.3. New Legal Annotation Types

11.5.4. Prospects for Annotating Expanded Legal Types

11.5.5. Eliciting Users” Argument Needs

Conceptual Information Retrieval from Statutes

11.6.1. A 'Type System for Statutes

11.6.2. Network Techniques for Conceptual Legal IR

11.6.3. Conceptual Legal IR with Statutory Network Diagrams

Conclusion

12 Cognitive Computing Legal Apps

12.1.
12.2.

12.3.

12.4.

12.5.

12.6.
12.7.
12.8.

Glossary

Introduction

New Legal Apps on the Market

12.2.1. Ross

12.2.2. Lex Machina

12.2.3. Ravel

Bridging Legal Texts and Computational Models

Cognitive Computing Apps for Testing Legal Hypotheses

12.4.1. A Paradigm for CCLAs: Legal Hypothesis-Testing

12.4.2. Targeted Legal Hypotheses

12.4.3. Operationalizing Hypotheses

12.4.4. Interpreting Hypotheses

Challenges for Cognitive Computing Legal Apps

12.5.1. Challenges: Automatically Annotating Legal Argument-
Related Information

12.5.2. Challenges: Manual Annotation of Training Instances

12.5.3. Challenges: Query-Interface Design

Detecting Opportunities for New Hypotheses and Arguments

What to Do Next?

Conclusion

Bibliography

Index

xiii

327
328

329
332
336
339
342
343
345
346
349

350

350
351
351
353
353
354
354
355
357
359
361
367

368
373
379
381
384
390

393
403
421

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

1.1

1.2

1.3

1.4

1.5

1.6

2.2

2.3

2.4
2.5

[lustrations

Heuristic rules defining loss and strict liability (Waterman and
Peterson, 1981)

ATN for offer and acceptance problems with four states: (o) no
relevant legal relations; (1) offer pending; (2) contract exists; (12)
contract exists and proposal to modify is pending (Gardner, 1987, p. 124)
Gardner’s heuristic method for distinguishing hard and easy legal
questions (Gardner, 1987; Rissland, 199o)

Argument diagram of IBM Debater’s output for violent video games
topic (root node) (see Dvorsky, 2014)

Diagram representing realistic legal argument involving violent video
games topic

Architecture of text analyzer for legal documents including contracts.
Dashed boxes show components for semantic analysis and conceptual
information retrieval

Normalized versions of two alternative interpretations of the Louisiana
statute and corresponding Prolog rules (bottom) (Allen and Engholm,
1978)

IRC section 354 and a normalized version (right) (see Allen and
Engholm, 1978)

Flow chart for propositionalized IRC section 354 (see Allen and
Engholm, 1978)

BNA provisions as represented in rules (Sergot et al., 1986)

BNA program output (excerpts) (Sergot et al., 1986, p. 376f)

Norm graphs for concluding “Legality” in section 4 (1) FDPA and
“Effective Consent” (see Oberle et al., 2012, pp. 305-6, Figs. 13 and 14)

19

22

24

25

29

42

143

47

49

59

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

Xvi

2.7

2.8

2.9

2.10

3.1
3.2
33
3-4
3:5

3.10

3.12

3-13

314

4.2
43

44
45

Illustrations

Sample BPMN diagram of simple insurance claim process with
business rule annotations (see Table 2.1) (Koetter et al., 2014,

Fig. 2, p. 220)

Petri net representing simple producer—consumer resource allocation
problem (see Kafura, 2011, p. 8)

Compliance system report of traces, rules, and tasks responsible for
noncompliance (excerpts) (see Governatori and Shek, 2012)
Statutory network diagram comparing Pennsylvania (PA) and Florida
(FL) statutory schemes re public health emergency surveillance:
Circles indicate public health system actors and partners in FL
and PA. Grey links indicate relationships present in both states;
white links indicate legal relationships present in PA but not in FL
(Sweeney et al., 2014)

Secrets-Disclosed-Outsiders dimension in Ashley (199o)

Hypo-style three-ply argument for the Mason case (see Ashley, 1990)
Hypo argument model with Venn diagram (Ashley, 1990)

Hypo claim lattice (Ashley, 1990)

Example of CABARET’s process for analyzing Weissman v. IRS, 751
F. 2d 512 (2d Cir. 1984) (Rissland and Skalak, 19g1)

CATO Factor hierarchy (Aleven, 1997, 2003)

CATO argument downplaying/emphasizing distinction (Aleven, 2003)
GREBE semantic net representation of Vaughn case (Branting, 1991,
1999)

GREBE matches structure of Vaughn case to Jarek problem (Branting,
1991, 1999)

In-furtherance-of employment cases retrieved by GREBE for Jarek
problem (Branting, 1991, 1999)

Excerpts of GREBE’s argument for Jarek problem (see Branting, 1991,
1999)

Which argument better accounts for teleological concerns? (Berman
and Hafner, 1993)

Theory constructed from factor and value preferences (Bench-Capon
and Sartor, 2003)

Argument as theory construction from factor and value preferences
(see Bench-Capon and Sartor, 2003)

Projection of capital gains tax cases onto two dimensions (see Mackaay
and Robillard, 1974)

Bail decisions data (a) from which decision tree is constructed (b)
Example features from Supreme Court database [S], the Segal-Cover
Scores [SC], and feature engineering [FE]| (Katz et al., 2014)

IBP domain model (Ashley and Briininghaus, 2006)

IBP algorithm (Ashley and Briininghaus, 2009)

60

66

97

99

101

102

109

110

112

116
117

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

4.6
47
5.1
5.2

5-3

5.4

5-5

57
5.8
5-9

5.10

5.11

5.12

513
514
515
5.16

6.1
6.2

Illustrations

Example of IBP’s prediction for MBL case

IBP vs. other prediction methods: results (Ashley and Briininghaus, 2009)
Excerpts from a theory learned by AGATHA with Mason case as cfs
(Chorley and Bench-Capon, 2005a)

A Carneades argument diagram (Gordon, 2008b,¢; Gordon and
Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012)

Classical deduction (Gordon, 2008b,¢; Gordon and Walton, 2009;
Walton and Gordon, 2009)

Classical deduction cannot prove proposition and its opposite

(see Gordon, 2008b,c; Gordon and Walton, 2009; Walton and
Gordon, 2009)

Scheme for arguments from defeasible inference rules (see Gordon,
2008b,¢; Gordon and Walton, 2009; Walton and Gordon, 2009)
Arguments (pro and con) with defeasible inference rules (Gordon,
2008b, ¢; Gordon and Walton, 2009; Walton and Gordon, 2009; see
Ashley, 2012)

When the rules run out (see Gordon, 2008b, c¢; Gordon and Walton,
2009; Walton and Gardon, 2009)

Carneades case-based argument (con) (Gordon, 2008b, ¢; Gordon
and Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012)
Carneades case-based argument (pro) (Gordon, 2008b,¢; Gordon and
Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012)

Attacking arguments as per VAF (see Atkinson and Bench-Capon,
2007, p. 113)

VJAP domain model (Grabmair, 2016)

Values protected by trade secret law: interests of plaintiffs in property
and confidentiality (Grabmair, 2016)

Values protected by trade secret law: interests of general public in
the usability of publicly available information and in fair competition
(Grabmair, 2010)

VJAP Program output for Dynamics Case (excerpts) (Grabmair, 2016,
pp- 59—060)

Statement and argument structure for reasoning about a Restatement
issue with trade-offs in VJAP (Grabmair, 2016, p. 51)

DLF partial rule tree for vaccine decisions, showing three causation
conditions of Althen (see Walker et al., 2011)

DLF extracted reasoning chains (excerpts) (see Walker et al., 2011)
Sample ontology for contract formation

Excerpts from e-Court ontology showing expansion of “reasoning
object,” “agent,” and “juridical role.” Links are is-a unless otherwise
noted (see Breuker and Hoekstra, 2004; Breuker et al., 2004; Van
Engers et al., 2008)

Xvil

18
119

121

131

133

133

134

139

140
150

152

153

155

157

162

172

175

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

xviii Illustrations

6.3 Ontology in the DALOS system (excerpts) (see Francesconi et al., 2010) 179

6.4 Model of legal argument with hypotheticals (Ashley, 2009b) 188
6.5 Case frame for Property-Interests-in-Quarry Microworld (P = Plaintiff,

D = Defendant) 101
6.6 Factor frame for Property-Interests-in-Quarry Microworld

(P = Plaintiff, D = Defendant) 192
6.7 ILC frame for Property-Interests-in-Quarry Microworld (P = Plaintiff,

D = Defendant) 196
6.8 Test frame for Property-Interests-in-Quarry Microworld (P = Plaintiff,

D = Defendant) 197
6.9 Policy/Value frame for Property-Interests-in-Quarry Microworld

(P = Plaintiff, D = Defendant) 197
6.10 Judge McCarthy’s Test in Popov v. Hayashi 201
7.1 Three-dimensional vector space model 217
7.2 BN for the family-away problem (see Charniak, 1991, p. 52) 219
7.3 Inference network retrieval model (see Turtle, 1995, p. 33) 220
7.4 Architecture of SPIRE (Daniels and Rissland, 1997a) 228
7.5 Retrieval for “videocassette” (see Rose and Belew, 1991) 230
8.1 History Project system architecture (see Al-Kofahi et al., 2001) 249
8.2 SVM examples. Black dots are positive instances, gray dots are

negative, and the white dot is “unknown” (see Noble, 2006, p. 1566) 252
8.3 Statutory analysis tool (Savelka et al., 2015) 256

9.1 Sample input/output of xmLegesExtractor (Francesconi, 2009, p. 66) 263
9.2 Multiclass SVM hyperplane example (see Francesconi and Passerini,

2007, p. 12) 204
9.3 Sample statutory sentences annotated for logical parts: antecedents

<A >, consequents < C >, and topics <'T' > (Bach et al., 2013) 269
9.4 Term suggestions for annotation templates (see Yoshida et al., 2013) 274
9.5 Partitioning statutory provision into subtree chunks 278

9.6 Decision tree for classifying statutory text units as relevant (rel.) or
irrelevant (irrel.) to the School of Public Health study 279
9.7 'The box plot summarizes the results of all the experiments on each
of the tasks for Florida (FL). Fach box plot describes performance in
terms of an Fi-measure within a single experiment. The tasks included
identifying: AA (acting agent), PR (prescription), AC (action), GL
(goal), PP (purpose), E'T (emergency type), RA (receiving agent), CN

(condition), TF (time frame) (Savelka and Ashley, 2015) 282
101 Excerpt of argument tree structure extracted automatically from a

case (see Moens et al., 2007, Fig.) 292
10.2 Overview of SMILE and IBP (see Ashley and Briininghaus, 2009) 295
10.3 Schematic of LUIMA-Annotate (Grabmair et al., 2015) 301

10.4 LUIMA annotation environment 308

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

10.5

10.6

11.1

11.2

11.3

11.4

1.5

1.6

11.9

11.10
11.11

11.12
12.1

12.2

12.3

12.4
12.5

Illustrations

Annotation with GATE Teamware of factors and components in a
trade secret case (Wyner and Peters, 2010)

WebAnno annotation of trade secret factors in the Mason case
(see Yimam et al., 2013)

LUIMA pipeline architecture (Grabmair et al., 2015)
LUIMA-Search: sample query (top) and sentence entry in Lucene
database index (bottom)

AP of LUIMA Versions v. Baseline for Eleven Queries and MAP
(Grabmair et al., 2015)

NDCG of LUIMA Versions v. Baseline for Lleven Queries and Average
NDCG (Grabmair et al., 2015)

Queries for cases with propositions playing particular argument
roles (from the V/IP Domain). Bold-faced terms represent existing
sentence-level argument-role types. Italicized terms represent legal
rule requirements

Queries for legal factors and argument roles (from the trade
secret domain). Bold-faced terms represent existing sentence-level
argument-role types plus additional legal factor and value-related types
(see Section 11.5.3). Italicized terms represent legal rule requirements.
Underlined italicized terms represent legal policies or values

New argument-role sentence-level types

Argument mining for the Mason case opinion. Annotations
(with WebAnno) are: trade secret misappropriation legal fac-
tors, core LUIMA sentence types, proposition/premise or
proposition/conclusion, and ARGUMENT SCHEMES

Query input data scheme. Nodes represent successive levels of a
DLF-style rule tree and reasoning chain. Here user seeks cases with
evidence and an evidence-based finding that “MMR vaccine can
cause intractable seizure disorder and death,” in connection with a
legal ruling on the “medical theory causally connects” requirement
of the Althen rule on causation-in-fact

General (left) and domain-specific (right) statutory types

Statutory conceptual queries from the Public Health Emergency domain

Texas LENA Statutory Network (Ashley et al., 2014)

Two templates for targeted legal hypotheses

Sample legal hypotheses CCLAs should target (from the trade secret
misappropriation domain)

Sample legal hypotheses CCLAs should target (from the V/IP
domain). Issues in italics.

RST-Tree for Mason excerpt showing some attribution information
Annotation environment for first-year law students

XIX

309

310

317
319
325

326

330

331
333

337

341
344
345
348
357

358
358

371
376

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

2.1

3.1

5.1

5.2

5-3

6.1

Tables

From regulatory texts to business rules to annotations of business
process (see Figure 2.7) to predicate logic forms (Koetter et al., 2014,
p. 220)

Trade secret Factors (Aleven, 1997)

Legal factors and precedents regarding undue hardship (see Gordon,
2008b, ¢; Gordon and Walton, 2009; Walton and Gordon, 2009)
Some proof standards in Carneades (Gordon and Walton, 2006) and
legal counterparts (Weiss, 2003; Feller, 2015)

Can CMLAs serve as a bridge between legal texts and answers humans
seek?

Three ontology frames for legal norm, concept, and legal act with slot
fillers for library regulation (see Van Kralingen et al., 1999, pp. 1135-8,
n50-3)

Sample Socratic legal dialogue in a microworld with argument moves
(P = Plaintiff, D = Defendant) (Ashley, 2009a, 2011)

Cases in Property-Interests-in-Quarry Microworld (P = Plaintiff,

D = Defendant). Factor abbreviations are defined below in Table 6.4
(Ashley, 2009a, 2011)

Factors and policies in Property-Interests-in-Quarry Microworld

(P = Plaintiff, D = Defendant) (Ashley, 2009a, 2011)

Proposed tests in Property-Interests-in-Quarry Microworld

(P = Plaintiff, D = Defendant) (Ashley, 2009a, 2011)

Hierarchical LUIMA type system: Sentence Level, Formulation,
Mention, and Term Types

Hierarchical LUIMA Type System: Sentence level types

Sample inverted index

61
g1

137

177

186

193

195

205
206

215

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

XX11

8.1

9.1

10.1

10.2

11.1
11.2

11.3

12.1

Tables

Confusion matrix for three classes of sentence roles (top). Three
confusion tables below show total true positives (TPs), true negatives
('TNs), false positives (FPs), and false negatives (FNs) for each class
Problems for ML vs. KE approaches to statutory provision
classification (de Maat et al., 2010)

Some argument schemes annotated automatically (Feng and Hirst,
2011)

Sentence classification performance measurements (best values
printed in boldface) (Grabmair et al., 2015)

Eleven queries submitted to CLIR system (Grabmair et al., 2015)
Presuppositional information in two legal claim domains

Structured query translated from “Finding or conclusion that MMR
vaccine causes intractable seizure disorder”

Examples of DLF evidentiary reasons in Special Masters” decisions
(left) and possible underlying policies or principles (right)

239
267
2093
305
318
336

340

367

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

Acknowledgments

The University of Pittsburgh School of Law provided summer Dean’s Scholarships
that supported writing this book. Notes for and drafts of this book evolved over the
course of teaching in the University of Bologna Erasmus Mundus doctoral program
in Law, Science, and Technology, an opportunity for which I thank Professor Monica
Palmirani. Vern Walker, Jaromir Savelka, and Thomas Gordon read prior drafts
and provided helpful suggestions for which I thank them. I am especially grateful to
my former Ph.D. student and continuing research colleague, Matthias Grabmair,
for his careful reading and many thoughtful suggestions. Matthias’s work on legal
text analytics, prediction and case-based argumentation and his and Jaromir’s work
applying machine learning to statutes convinced me that it was time to write this
book. Advising, collaborating with, and learning from Matthias have been some of
the great joys of my professional life as a teacher. I would never have had a profes-
sional life as a teacher, and I would never have completed this book, without my wife
Alida’s constant love and support. Our daughter Alexandra, who keeps us smiling as
we toil away with our research and writing, helped me select the cover art.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

PART I

Computational Models of Legal Reasoning

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future
Legal Practice

1.1. INTRODUCTION

Artificial Intelligence and Law (Al & Law), a research field since the 198os with roots
in the previous decades, is about to experience a revolution. Teams of researchers
in question answering (QA), information extraction (IE), and argument mining
from text planted the seeds of this revolution with programs like IBM’s Watson
and Debater and the open-source information management architectures on which
these programs are based. From these seeds, new applications for the legal domain
are sure to grow. Indeed, they are growing now. This book explains how.

Programs like Watson and Debater will not perform legal reasoning. They may
be able to answer legal questions in a superficial sense, but they cannot explain their
answers or make legal arguments. The open-source text analysis tools on which they
are based, however, will make a profound difference in the development of new
legal applications. They will identify argument-related information in legal texts that
can transform legal information retrieval into a new kind of conceptual information
retrieval: argument retrieval (AR).

Computational models developed by Al & Law researchers will perform the legal
reasoning. The newly extracted argument-related information will connect the com-
putational models of legal reasoning (CMLRs) and argument directly with legal
texts. The models can generate arguments for and against particular outcomes in
problems input as texts, predict a problem’s outcome, and explain their predictions
with reasons that legal professionals will recognize and can evaluate for themselves.
The result will be a new kind of legal app, one that enables cognitive comput-
ing, a kind of collaborative activity between humans and computers in which each
performs the kinds of intelligent activities that they can do best.

This chapter introduces the subject of Al & Law and explains the role it will
play in light of the new technologies for analyzing legal texts. It explains how these

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

4 Computational Models of Legal Reasoning

technologies enable new tools for legal practice using computational models of legal
reasoning and argumentation developed by Al & Law researchers.

Some questions addressed in this chapter include: What is the subject of Artificial
Intelligence and Law? What is a CMLR? What are the new technologies for auto-
mated OA, IF, and argument mining from texts? What roles will Al & Law CMLRs
and argument play given these new technologies? What are conceptual information
retrieval and cognitive computing, and what kind of legal app will support them?

1.2. AT & LAW AND THE PROMISE OF TEXT ANALYTICS

The goal of much of the research in Al & Law has been to develop CMLRs that can
make legal arguments and use them to predict outcomes of legal disputes. A CMLR
is a computer program that implements a process evidencing attributes of human
legal reasoning. The process may involve analyzing a situation and answering a legal
question, predicting an outcome, or making a legal argument. A subset of CMLRs
implements a process of legal argumentation as part of their reasoning. These are
called computational models of legal argument (CMLAs).

CMLRs and CMLAs break down a complex human intellectual task, such as
estimating the settlement value of a product liability suit or analyzing an offer and
acceptance problem in a first-year contracts course, into a set of computational steps
or algorithm. The models specify how a problem is input and the type of legal result
to output. In between, the model builders have constructed a computational mech-
anism to apply domain knowledge to perform the steps and transform the inputs to
outputs.

In developing these models, researchers address such questions as how to rep-
resent what a legal rule means so that a computer program can decide whether it
applies to a situation, how to distinguish “hard” from “easy” legal issues, and the roles
that cases and values play in interpreting legal rules. Their answers to these ques-
tions are not philosophical but scientific; their computer programs not only model
legal reasoning tasks but also actually perform them; and the researchers conduct
experiments to evaluate how well their programs perform.

While Al & Law researchers have made great strides, a knowledge representation
bottleneck has impeded their progress toward contributing to legal practice. So far,
the substantive legal knowledge employed by their computational models has had to
be extracted manually from legal sources, that is, from the cases, statutes, regulations,
contracts, and other texts that legal professionals actually use. That is, human experts
have had to read the legal texts and represent relevant parts of their content in a
form the computational models could use. An inability to automatically connect
their CMLRs directly to legal texts has limited the researchers” ability to apply their
programs in real-world legal information retrieval, prediction, and decision-making.

Recent developments in computerized QA, IE from text, and argument min-
ing promise to change that. “A Question-answering system searches a large text

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 5

collection and finds a short phrase or sentence that precisely answers a user’s ques-
tion” (Prager etal., 2000). “Information extraction is the problem of summarizing the
essential details particular to a given document” (Freitag, 2000). Argument mining
involves automatically identifying argumentative structures within document texts,
for instance, premises and conclusion, and relationships between pairs of arguments
(ACL-AMW, 2016). All three technologies usually rely, at least in part, on applying
machine learning (ML) to assist programs in processing semantic information in
the texts.

A more general term for these techniques, text analytics or text mining, “refers to
the discovery of knowledge that can be found in text archives . .. [It] describes a set
of linguistic, statistical, and machine learning techniques that model and structure
the information content of textual sources for business intelligence, exploratory data
analysis, research, or investigation” (Hu and Liu, 2012, pp. 387-8). When the texts
to be analyzed are legal, we may refer to “legal text analytics” or more simply “legal
analytics,” the “deriving of substantively meaningful insight from some sort of legal
data,” including legal textual data (Katz and Bommarito, 2014, p. 3).

The text analytic techniques may open the knowledge acquisition bottleneck that
has long hampered progress in fielding intelligent legal applications. Instead of rely-
ing solely on manual techniques to represent what legal texts mean in ways that
programs can use, researchers can automate the knowledge representation process.

As a result, some CMLRs and CMLAs may soon be linked with text analysis
tools to enable the construction of a new generation of legal applications and some
novel legal practice tools. Specifically, CMLRs and CMLAs developed in the Al &
Law field will employ information extracted automatically from legal texts such as
case decisions and statutes to assist humans in answering legal questions, predicting
case outcomes, providing explanations, and making arguments for and against legal
conclusions more effectively than existing technologies can.

In a complementary way, the Al & Law programs can provide answers to questions
that are likely on the minds of technologists in commercial laboratories and start-
ups: Now that we are able to extract semantic information automatically from legal
texts, what can computer programs do with it? And, exactly what kind of information
should be extracted from statutes, regulations, and cases? The CMLRs demonstrate
how the new text processing tools can accommodate, adapt, and use the structures
of legal knowledge to assist humans in performing practical legal tasks.

Some CMLRs and CMLAs could help advanced Al programs make intelligent
use of legal sources. Certainly, the extracted information will be used to improve
legal information retrieval, helping to point legal professionals more quickly to rel-
evant information, but what more can be done? Can computers reason with the
legal information extracted from texts? Can they help users to pose and test legal
hypotheses, make legal arguments, or predict outcomes of legal disputes?

The answers appear to be “Yes
to be done before the new legal applications can demonstrate their full potential.

1”7

but a considerable amount of research remains

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

6 Computational Models of Legal Reasoning

Indeed, that is what this book is about: how best to perform that research. This book
will also assist practitioners and others in contributing to this research and in applying
the resulting legal apps. This includes commercial firms interested in developing
new products and services based on these models and public agencies wishing to
modernize their workflows.

1.3. NEW PARADIGMS FOR INTELLIGENT TECHNOLOGY
IN LEGAL PRACTICE

The technology of legal practice is changing rapidly. Predictive coding is transform-
ing discovery in litigation. Start-ups like Ravel (Ravel Law, 2015a), Lex Machina
(Surdeanu et al., 2011), and the Watson-based Ross (Ross Intelligence, 2015) (see
Sections 4.7 and 12.2) are garnering attention and enlisting law firm subscribers.
These and other developments in text analytics offer new process models and tools
for delivering legal services, promising greater efficiency and, possibly, greater public
accessibility.

These changes present challenges and opportunities for young attorneys and com-
puter scientists, but it has not been easy to predict the future of legal practice.
Declines in hiring by law firms have led to reductions in the number of law school
applicants. Prospective applicants weigh the chances of gainful employment against
the size of their student loans and look elsewhere. There is uncertainty about what
law-related tasks the technology can perform. After citing press, academic, and com-
mercial predictions of “the imminent and widespread displacement of lawyers by
computers,” Remus and Levy argue persuasively that the predictions “fail to engage
with technical details . . . critical for understanding the kinds of lawyering tasks that
computers can and cannot perform. For example, why document review in discovery
practice is more amenable to automation than in corporate due diligence work, and
why the automation of ... sports stories does not suggest the imminent automation of
legal brief-writing” (Remus and Levy, 2015, p. 2).!

It is also unclear what law students need to learn about technology. Law firms
have long called for law schools to graduate “practice-ready” students but even firms
seem confused about the kinds of technology the firms will require, whether to
develop the technology in house or rely on external suppliers, and the skills and
knowledge that would best prepare law students for evaluating and using the new
technologies.

William Henderson, a law professor at Indiana University’s Maurer School of
Law, has argued that legal processing engineering has changed law practice and will

! While L agree that these predictions of displacing attorneys are overblown, Remus and Levy have largely
overlooked the Al & Law research reported in this book, research that will enable AR and cognitive
computing to assist attorneys in legal practice.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 7

continue to do so, necessitating that law schools teach students process engineering

skills.

Because of the emphasis on process and technology now taking hold within the
legal industry, the practical technical skills and domain knowledge [now taught]
may be inadequate for a large proportion of law students graduating in the year
2015 ... [Students] . .. are unprepared to learn that law is becoming less about jury
trials and courtroom advocacy and more about process engineering, predictive cod-
ing, and the collaborative and technical skills those processes entail. (Henderson,

2013, pp. 505f)

Process engineering (or “reengineering”) has been defined in the business and
information management literature as a “change process,”

the aim of [which] is quick and substantial gains in organizational performance
by redesigning the core business process, [addressing] a need to speed up the pro-
cess, reduce needed resources, improve productivity and efficiency, and improve
competitiveness. (Attaran, 2004, p. 585)

Information Technology (I'T) has been called “the most effective enabling technol-
ogy” for such business process reengineering, establishing “easy communication,
improving the process performance,” and helping “the reengineering effort by
modeling, optimizing and assessing its consequences” (Attaran, 2004, p. 595).

Henderson emphasizes the role process engineering has played in the evolution of
legal work, a concept he draws from Richard Susskind’s The End of Lawyers?, accord-
ing to which legal work is evolving from bespoke (or customized) to standardized,
systematized, packaged, and, ultimately, to a commoditized format:

These changes [from legal work that is bespoke to ... commoditized] are made
possible by identifying recursive patterns in legal forms and judicial opinions, which
enables the use of process and technology to routinize and scale very cheap and
very high quality solutions to the myriad of legal needs. [F|ormerly labor-intensive
work that has traditionally been performed by entry-level United States law school
graduates ... is now being done by Indian law graduates [working for Legal Process
Outsourcers (LPOs)], who are learning how to design and operate processes that
extract useful information from large masses of digital text. Not only are the Indian
law graduates getting the employment, they are learning valuable skills that are
entirely — entirely — absent from U.S. law schools. (Henderson, 2013, pp. 479, 487)

In focusing on the use of process and technology to design cost-efficient methods
to deliver legal solutions, Henderson agrees with Susskind that commoditization is
the culmination of this evolution of legal work.

A legal commodity ... is an electronic or online legal package or offering that
is ... made available for direct use by the end user, often on a DIY [Do It Your-
self] basis. [T]he word “commodity” in a legal context [refers] to I'T-based systems
and services . .. [that are] undifferentiated in the marketplace (undifferentiated in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

8 Computational Models of Legal Reasoning

the minds of the recipients and not the providers of the service). For any given
commodity, there may be very similar competitor products. (Susskind, 2010, p. 31ff)

In other words, the result of legal commoditization is a software service or product
that anyone can purchase, download, and use to solve legal problems without hir-
ing an attorney, or, in current parlance, a kind of computerized legal application, a

“legal app.”

1.3.1. Former Paradigm: Legal Expert Systems

The two concepts, process engineering and commoditization, raise interesting ques-
tions. If process engineering of legal services is rethinking how to deliver “very cheap
and very high quality” solutions, who or what will be responsible for tailoring those
solutions to a client’s particular problem? If, as Susskind mentions, commoditization
means “Do It Yourself,” does that mean the client is on its own? In other words, what
kind of support does the legal app provide? In particular, can the legal app perform
some level of customization?

Not so long ago, the paradigm computational model for designing a legal app
would have been a legal expert system. As Susskind, the developer of a pioneering
legal expert system, defined them,

“expert systems” are computer applications that contain representations of knowl-
edge and expertise . . . which they can apply — much as human beings do — in solving
problems, offering advice, and undertaking a variety of other tasks. In law, the idea
is to use computer technology to make scarce expertise and knowledge more widely
available and easily accessible. (Susskind, 2010, p. 120f)

Typically, legal expert systems deal with narrow areas of law but have enough
“knowledge and expertise” in the narrow domain to ask a client user pertinent ques-
tions about his/her problem, to customize its answer based on the user’s responses,
and to explain its reasons. Their “expertise” comprises heuristics that skilled prac-
titioners use in applying legal rules to specific facts. These heuristics are “rules of
thumb,” frequently useful but not guaranteed to lead to a correct result (Waterman
and Peterson, 1981).

The rules are represented in a declarative language specifying their conditions and
conclusion. They are derived through a largely manual knowledge acquisition pro-
cess: manually questioning human experts, presenting them with problem scenarios,
inviting them to resolve the problems, and asking them what rules the experts applied
in analyzing the problem and generating a solution (Waterman and Peterson, 1981).

Waterman’s Product Liability Expert System

Don Waterman’s legal expert system (let’s call it W-LES) is a classic example from
the 1980s of a CMLR that performed limited but automatic legal reasoning around
a practical problem. It provided advice on settlement decisions of product liability

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 9

[RULE, 1: DEFINITIIN OF LOSS) [RLALES: STRICT LIABILITY DEFINITIOIN]
IF the type of the plaintiff's lows is IF {the plaintiff ks injurad by the product
“irgay” oo |Ehe plineH coses represent the decesdent

ared thep decedent I blled by the product|

THEN assaert the plairtil? is injusred by ks E
ar the plainkils praoperty isdamaged by e product)

ther peioact, s the mcidental-sale deferrie & not applcable
and |t grodist is manufacidied by che défendant

[FURLES. 2: DEFIMITION OF LOSS] orthe product (s sold by the defendant

IF b 1y pee of thee plainkill s Boss 1= ar ke predduct s bepried By the delendant)

“cecpdent and the defendant is respornsibbe for the use of the

THEN assert e plairtill does product

represent the decedent and the el [Californis s the jursdicion of The case

decedent & klled by th: produce, or thee i ol the product s the wierim

ar the purchaser af the product = the wictim)
and the produs s defective 31 the tiee of the sale

FULELE PEVINMICL ER LOS) and (the prading Is unchangad from e manufacture fo

IF thie typa of the plaintiff s foss 1= the sake
“progeny-damage” o [the defpndant'c sxpactation & “the prodiact s
THEN asssrt the glaintiff 's property e hanged
Eamaged by the prociact fravn the manufacture 1o the saje”
and the defendant’ s expectplioe is repsonsbie-and-
peoper|
THEM assert the theory of strict lizbliey dops apply 1o the
plainers o

FIGURE 11. Heuristic rules defining loss and strict liability (Waterman and
Peterson, 1981)

disputes (Waterman and Peterson, 1981). The inputs to W-LES were descriptions of
disputes involving product liability. As outputs, W-LES recommended settlement
values and explained its analyses.

The recommendations of W-LES whether to settle a legal dispute and for how
much were based on heuristic rules, including claims adjusters’ rules for calculating
damages and “formalized statements of the California legal doctrine for product
liability as stated in statutes, court opinions, and legal treatises” (Waterman and
Peterson, 1981, p. 15). Figure 1.1 illustrates the program’s heuristic rules defining three
kinds of losses and the claim of strict liability.

W-LES mechanically processed a fact situation by applying these heuristic rules
in a kind of forward chaining. Its inference engine cycled through the rules, testing if
any could “fire,” that is, if a rule’s conditions were satisfied by the facts in the database
representing the current problem. If so, the applicable rule did fire and its deduced
consequences were added to the database. The inference engine repeatedly cycled
through its rules until no more rules could apply.

Ideally, by the end of the process, the rules whose conclusions represented a solu-
tion to the problem have “fired” successfully, yielding a prediction and an assessment
(or in other legal expert systems, a selection and completion of a relevant legal
form). The explanation of the result consists of an “audit trail” or trace back through
the rules that fired and the satisfied conditions that led to their firing (Waterman and
Peterson, 1981).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

10 Computational Models of Legal Reasoning

Other expert systems applied rules through backward chaining. The inference
engine begins with a set of desired goals, picks one, and cycles through its database
of rules (and facts) in search of a rule whose conclusion is the desired goal. Then, it
adds that rule’s conditions to the set of desired goals and repeats the cycle until all
of the goals are satisfied or there are no more rules (or facts) with which to satisfy
remaining goals (Sowizral and Kipps, 1985, p. 3).

Waterman faced three design constraints in developing legal expert systems: legal
rules vary across jurisdictions; legal rules employ ill-defined legal concepts; and
inferences in the proof are uncertain.

First, different states” legal rules of product liability differ, for instance, in whether
the rule of contributory or comparative negligence applies. If contributory neg-
ligence applies, the plaintiff’s negligence eliminates liability. If comparative neg-
ligence, the plaintiff’s negligence proportionately reduces the plaintiff’s recovery.
Waterman addressed this problem by representing multiple states’ rules and allow-
ing users to specify which rules to apply in order to demonstrate the differences in
outcome.

Second, the legal rules employed some legal concepts without defining them
(i.e., “imprecise terms” in Waterman'’s parlance), such as “reasonable and proper”
or “foreseeable” (Waterman and Peterson, 1981, p. 18). Waterman considered a num-
ber of possible solutions. These included providing more “rules that describe how an
imprecise term was used previously in particular contexts,” displaying “brief descrip-
tions of instances of prior use of the imprecise term” and letting the user decide, com-
paring “prior cases in which the term applied, and provid[ing] a numeric rating that
indicates the certainty that the rule . .. applies ... In the end, he settled on having
the system ask the user if the term applied” (Waterman and Peterson, 1981, p. 26).

Third, litigators are uncertain about proving factual issues and applicable legal
doctrine. Waterman’s suggestions included incorporating the uncertainties as addi-
tional premises within each rule or treating uncertainties as a separate rule to be
applied after other rules have been considered. Users would “consider a case inde-
pendently of ... uncertainty, reach a tentative conclusion, and then adjust that
conclusion by some probabilistic factor that represents their overall uncertainty
about the case” (Waterman and Peterson, 1981, p. 26).

Modern Legal Expert Systems
Although no longer the paradigm, legal expert systems are still widespread in use in
a number of contexts.

Neota Logic provides tools for law firms, law departments, and law school students
to construct expert systems. Its website offers examples of computerized advisors
concerning questions involving, for instance, the FCPA, bankruptcy risks in cross-
border transactions, and the Family and Medical Leave Act (Neota Logic, 2016) (see
Section 2.5.1).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 1

CALL the Center for Computer-Assisted Legal Instruction, and II'T Chicago-
Kent College of Law’s Center for Access to Justice & Technology, overseen by
Professor Ron Staudt, provide a web-based tool to author expert systems. Using the
tool, non-programmers with legal skills can create expert systems called A2] Guided
Interviews® that lead self-represented litigants through a legal process resulting in a
document to be filed in court (A2], 2012).

As discussed in Section 2.5, firms employ management systems with expert-
systems-style business rules to monitor whether their processes comply with relevant
regulations.

While still widely used, legal expert systems may not be the paradigm “killer
app” for the legal domain. There are at least three reasons for this. First, the tech-
niques developed to enable expert systems to deal with uncertain and incomplete
information tend to be ad hoc and unreliable. Second, the manual process of acquir-
ing rules is cumbersome, time-consuming, and expensive, a knowledge acquisition
bottleneck that has limited the utility of expert systems in law and many other fields
(Hoekstra, 2010). Third, text analytics cannot solve this particular knowledge acqui-
sition bottleneck. While the new text analytics can extract certain kinds of semantic
legal information from text, they are not yet able to extract expert systems rules.

From time to time, we will return to expert systems, their promise, and their limi-
tations in this book; suffice it to say here that if the legal app is to customize solutions
to the particularities of the user’s problem, it may be necessary to find some other
paradigms.

1.3.2. Alternative Paradigms: Argument Retrieval
and Cognitive Computing

Unlike expert systems, the two alternative paradigms, AR and cognitive computing,
do not purport to solve users’ legal problems on their own. Instead, computer pro-
grams extract semantic information from legal texts and use it to help humans solve
their legal problems.

Conceptual information retrieval, of course, is not new. Al has long sought to
identify and extract semantic elements from text such as concepts and their relation-
ships. As defined by Sowa, “concepts represent any entity, action, or state that can
be described in language, and conceptual relations show the roles that each entity
plays” (Sowa, 1984, p. 8). Similarly, it has long been a goal of Al to make informa-
tion retrieval smarter by using the extracted semantic information to draw inferences
about the retrieved texts. Roger Schank employed the term, “conceptual information
retrieval” in 1981 to describe:

a system to deal with the organization and retrieval of facts in relatively uncon-
strained domains (for example, . . ., scientific abstracts). First, the system should be
able to automatically understand natural-language text — both input to the database

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

12 Computational Models of Legal Reasoning

and queries to the system . . . in such a way that the conceptual content or meaning
of an item can be used for retrieval rather than simply its key words . . . If categories
are specified by concepts, and if the natural-language analyzer parses text into a
conceptual representation, then inferences can be made from the conceptual rep-
resentations (or meanings) of new items to decide which categories they belong in.
(Schank et al., 1981, pp. 98, 102)

Nor is conceptual legal information retrieval new. Pioneering efforts to achieve
conceptual retrieval in the legal domain were undertaken by Hafner (1978) and
Bing (1987). As discussed in Sections 7.7 and 11.2, modern legal IR services take into
account the substantive legal concepts and topics of interest that users intend to tar-
get. Other recent work has focused on extending conceptual information retrieval
systems so that they return legal information conceptually related not just to the
query but to the problem to which the user intends to apply the targeted information
(see Winkels et al., 2000).

Today, conceptual legal information retrieval can be defined as automatically
retrieving relevant textual legal information based on matching concepts and their
roles in the documents with the concepts and roles required to solve the user’s legal
problem. As the definition makes clear, conceptual legal information retrieval is dif-
ferent from ordinary legal IR. It focuses on modeling human users’ needs for the
information they seek in order to solve a problem, for instance in the legal argument
a user seeks to make, and on the concepts and their roles in that problem-solving
process.

Even focusing conceptual legal IR on helping users construct viable arguments
in support of a claim or counter an opponent’s best arguments is not new. Dick
and Hirst (1991) explored manually representing cases in terms of schematic argu-
ment structures to support lawyers” “information seeking . . . to build an argument to
answer the problem at hand.” At that time, however, the authors could only assume
“that in due course, . . . both language analysis and language generation by machine
will be possible.”

Their assumption has finally come true. For years, robust means for extracting
such conceptual, argumentrelated information from natural language texts for pur-
poses of conceptual legal information retrieval were not available. Today, however,
language analysis tools that can automatically identify argument-related information
in case texts are finally available, and with them a new paradigm is born: robust con-
ceptual legal IR based on argument-related information, or AR as it is referred to in
Section 10.5.

Cognitive computing is a second new paradigm for system development. Despite
its name, cognitive computing is not about developing Al systems that “think” or
perform cognitive tasks the way humans do. The operative unit of cognitive com-
puting is neither the computer nor the human but rather the collaborating team of
computer and human problem-solver(s).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 13

[I]n the era of cognitive systems, humans and machines will collaborate to pro-
duce better results, each bringing their own superior skills to the partnership. The
machines will be more rational and analytic — and, of course, possess encyclopedic
memories and tremendous computational abilities. People will provide expertise,
judgment, intuition, empathy, a moral compass, and human creativity. (Kelly and
Hamm, 2013)

In a cognitive computing paradigm, human users are ultimately responsible for
customizing their own solution using a legal app, but the commoditized legal service
technology should apprise the humans of the need for customization and support
them with customized access to relevant legal information to help them construct
a solution. That is, the legal app will not only select, order, highlight, and summa-
rize the information in a manner tailored to a human user’s specific problem but
also explore the information and interact with the data in new ways not previously
possible.

In order for this approach to succeed, the technology does not need to solve the
user’s problem. It will not be a legal expert system. It will, however, need to have some
“understanding” of the information at its disposal and of the information’s relevance
in the human’s problem-solving process and to make the information conveniently
available at the right times and in the right contexts. In this respect, AR is consistent
with cognitive computing where responsibility for finding and applying resources
to solve a user’s problem is divided between intelligent tasks the computer can best
perform and those addressed to human users” expertise.

Expert systems and cognitive computing paradigms differ in the sources of their
respective “knowledge.” In the former, expertise is embodied in rules that human
experts apply in solving such problems, rules that usually have been constructed
manually by engineers in the knowledge acquisition process.

In the cognitive computing paradigm, in contrast, the knowledge is embodied in
the corpus of texts from which the program extracts candidate solutions or solution
elements and ranks them in terms of their relevance to the problem. This assumes,
of course, that an available corpus of texts contains information relevant to the type
of problem. For instance, if the problem is a fact situation about which to make
arguments concerning a legal claim, a corpus of legal cases involving that type of
claim would be required.

The technology cannot read the texts in the sense that humans read, but it will
have techniques for intelligently processing the texts, identifying those elements that
are relevant to a problem, and bringing them to the user’s attention in an appropri-
ate way. Significantly, the program’s knowledge for assessing relevance, that is, for
identifying, ranking, and presenting candidate solutions or elements, is acquired not
primarily manually but automatically by extracting patterns from some collection of
domain-specific data using ML.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

14 Computational Models of Legal Reasoning

1.3.3. Toward the New Legal Apps

At least, that is the goal. Although researchers in university and commercial settings
recognize its extraordinary potential, at the time of writing, probably no one really
knows exactly how to implement cognitive computing in the legal domain. Clearly,
it will not be easy, but it does seem feasible.

Al & Law researchers and technologists are actively engaged in applying the
new OA, IE, and argument mining techniques to problem-solving processes in the
legal domain. They see the potential for modeling legal reasoning, argumentation,
and prediction of integrating computational techniques that have been developed
over the years to represent statutory rules and case decisions. The Al & Law tools
illustrate the elements in legal texts that the new text processing techniques should
target and the legal tasks that can then be accomplished.

They recognize, too, that Al & Law research has identified design constraints that
limit, or firmly guide, what CMLRs can accomplish. Sometimes the constraints
can be finessed or ignored given the task a legal app addresses, but it is good to
know about them in advance. The design constraints will help technologists avoid
reinventing the wheel or charging down dead ends.

The next few years will be exciting times in the development of legal practice and
the history of Al & Law! The aim of this book is to present the available tools, explore
how they can be integrated with the new text processing tools, and equip readers to
participate in this technological revolution.

1.4. WHAT WATSON CAN AND CANNOT DO

But wait a minute! Isn’t the revolution already over? IBM’s Watson performs remark-
able feats of QA based on IE from text. Its cousin, the Debater program already mines
arguments from text. Perhaps one can simply turn Watson and Debater loose on legal
texts and watch them perform legal reasoning, no?

No, as already noted, programs like Watson and Debater will not perform legal
reasoning. This section addresses why not. At the same time, Watson offers a con-
ceptual framing and text analytic tools that can be instrumental in addressing the
challenge of building programs that can perform legal reasoning from text.

Highlighting Watson and Debater here is not meant to suggest that the future
development of intelligent tools for digital age legal practice depends on IBM’s pro-
prietary techniques. In fact, Watson is based on an open-source text processing and
IE tool, the Unstructured Information Management Architecture (UIMA). An alter-
native to UIMA, the open-source GATE annotation environment, was used in topic
labeling in connection with the Debater research.

In designing and explaining the Watson technology, however, IBM researchers
have framed some of the component tasks of text analytics. It is convenient to take
advantage of that framing in order to suggest the tasks’ potential application in the
legal domain.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 15

1.4.1. IBM’s Watson

In February 2011, “Jeopardy!,” a TV game show popular with older retirees and
younger nerds, captured the imagination of the American public. The game’s setup
and rules are straightforward: longtime host Alex Trebek presides as three contestants
face a game board with six categories. Each category has five items of increasing
value. Fach item comprises a small window; when opened it displays an answer.
The contestants race to hit the buzzer first for a chance to state the question that
goes with the answer, win the value of the item, and choose the next category and
item. The cardinal rule is that the contestant’s response, his or her “answer,” must
be in the form of a question.

The game show had been an evening TV staple since 1984, but this evening was
different: one of the three contestants was not human. A team at IBM Research led
by David Ferrucci had designed a computer system named “Watson” especially to
participate in the “Jeopardy!” game on prime time TV against the two top human
champions: Brad Rutter, whose winnings from previous appearances on “Jeopardy!”

1”7

topped $3.25 million, and Ken Jennings, who, with a winning streak of 74 games,
was nearly a fixture of the show, himself.

By the end of three consecutive nights of play, Watson had beaten the human
champions convincingly. It was a tour de force for IBM Research whose Deep
Blue chess-playing program had beaten Gary Kasparov, the world’s reigning human
chess champion, 14 years before.

Of course, Watson was fallible. Famously it flubbed in “Final Jeopardy!,” the last
round of the evening when the host announces the category and the show jumps to a
commercial break. In the meantime each, contestant wagers an amount up to his or
her current total score. When the host finally reveals the “Final Jeopardy!” answer,
the contestants have 30 seconds to write their responses on an electronic display,
accompanied by a now familiar jingle that has come to epitomize the tension of
thinking under time pressure (i.e., “Think,” composed by Merv Griffin, the true
genius of the “Jeopardy!” gameshow).

On this evening, the “Final Jeopardy!”
answer was “Its largest airport is named for a World War II hero; its second largest
for a World War Il battle.” “Think” jingled to its inevitable conclusion, and the host
asked each contestant to reveal his, or its, question.

category was “U.S. Cities for $400.” The

Probably, it was not because the audience was amazed that Watson had gotten it
wrong. The correct response was “What is Chicago?” Anyone could see that the
question was tricky. One might know that Chicago’s second largest airport, Midway
Airport, was named for a famous World War II naval battle in the Pacific, but hardly
anyone knows that Navy flying ace, Lieutenant Commander Edward Henry “Butch”
O’Hare, was a hero of that war.

Instead, the audience probably was amazed that Watson did not know a common-
sense bit of trivia: Everyone knows that Toronto is not a U.S. city!

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

16 Computational Models of Legal Reasoning

Although Watson’s blunder was not costly (Watson wagered a mere $947), it was
revealing: Watson does not have knowledge of facts and information “hard wired” in
some way such as expert rules. Rather, for each question/answer (O/A) type, Watson
learns how to extract candidate answers to the question (or questions to the answer
in “Jeopardy!” speak) from millions of texts in its database. For each Q/A type, it
also learns the kinds of evidence that enable it to recognize answers to that type of
question, evidence in the form of syntactic features and semantic clues in the text,
where the semantic clues include references to certain concepts and relations. For
each Q/A type, Watson has also learned how much confidence to have in the various
types of evidence associated with the texts. As indicated by the repeated question
marks, Watson had little confidence in its response (Ferrucci et al., 2010).

Watson learns from a training set of documents, for which humans marked-up
or “annotated” many instances of each type of Q/A pair. The annotated training
texts serve as examples of how to extract information about that type of question and
answer. Watson learns the how-to-extract information from the training examples
and can apply it to extract information from other texts that have not been marked
up, generalizing the how-to information in the process (Ferrucci et al., 2010).

In explaining Watson’s response, two IBM Watson project researchers pointed out
that Chicago was a very close second on Watson’s list of possible answers, but that
Watson had not found much evidence to connect either of the city’s airports to World
War II. In addition, Watson had learned that category phrases like “U.S. Cities” are
not very dispositive. If “This U.S. city’s ...” had appeared in the answer, Watson
would have given US cities more weight. Finally, there are cities named Toronto in
the United States, for example, Toronto, IL, Toronto, IN, Toronto, IA, Toronto, MI,
Toronto, OH, Toronto, KS, and Toronto, SD, and Toronto, Canada does have an
American League baseball team (Schwartz, 2011).

Applying Watson in Law

It appears that IBM would like to apply Watson technology (also known as Deep QA)
to the legal domain (see Beck, 2014).> According to IBM General Counsel, Robert
C. Weber,

Pose a question and, in milliseconds, Deep QA can analyze hundreds of millions
of pages of content and mine them for facts and conclusions ... Deep QA won't
ever replace attorneys; after all, the essence of good lawyering is mature and sound
reasoning ... But the technology can unquestionably extend our capabilities and
help us perform better ... At IBM, we're just starting to explore about how Deep
OA can be harnessed by lawyers. (We're pretty sure it would do quite well in a
multi-state bar exam!) But already it's becoming clear that this technology will be
useful in a couple of ways: for gathering facts and identifying ideas when building

2 Ross Intelligence (2015), discussed at Section 12.2, applies Watson technology in the legal domain.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 17

legal arguments. The technology might even come in handy, near real-time, in the
courtroom. If a witness says something that doesn’t seem credible, you can have an
associate check it for accuracy on the spot. (Weber, 2011)

Watson’s mistake, however, suggests some of the challenges for applying Watson
technology to the legal domain. One can but imagine the game of “LEGAL Jeop-
ardy!” Host Alex reveals “The Category is: Sports law.” Ken Jennings selects “Sports
law for $1.2 Million”! The window slides open: The answer is: “American League
Baseball teams that cannot legally hire replacement workers during an economic
strike.”

A buzzer sounds. “Watson?” Alex responds.

Watson replies, “What are the Toronto Blue Jays?”

Alex smiles. “Correct! The Toronto Blue Jays cannot hire replacement workers
during an economic strike.”

This time, knowing that Toronto is not a U.S. city is certainly a relevant juris-
dictional consideration in legally analyzing the issue. Unlike the other American
League teams, the Toronto Blue Jays are not subject to U.S. labor law, but to
provincial labor law (Ontario) where the rules on hiring replacement workers dif-
fer, according to Lippner (199s5), a law review article regarding the 1995 baseball
strike.

Watson, however, would not necessarily need to know Toronto’s location or
nationality in order to answer the question correctly. Watson does not have a set
of rules specifying the nation in which Toronto is located or the laws that apply to
it, nor rules for reasoning about whether Canadian federal or Ontario provincial law
would govern this labor law issue. But that is not how Watson would answer such
questions, anyway.

As long as Watson’s corpus contains the above law review article, an appropriately
trained Watson could learn to identify it as relevant to this type of question, extract
from it the relevant answer, and assess its confidence in the answer’s responsiveness.

This is a legal question, however. When it comes to fielding legal questions, one
expects more than just an answer. One expects an explanation of why the answer
is well-founded. Presumably, Watson could not explain the answer it had extracted.
Explaining the answer requires one to reason with the rules and concepts relevant
to choice of law and legal subject matter, knowledge that Watson does not have and
could not use.

An appropriately trained Watson could have learned types of evidence for recog-
nizing relevant question and answer pairs, including semantic clues, for instance,
concepts and relations like “legally hire,” “replacement workers,” “economic strike.”
It could also have learned how much weight to accord to this evidence in assessing
its confidence that the question and answer are related.

Whether this kind of evidence is sufficient for Watson to explain the answer in a
manner acceptable from a legal viewpoint is another matter. Watson’s how-to-extract

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

18 Computational Models of Legal Reasoning

knowledge does not appear to extend that far, yet (but see the discussion of IBM’s
Debater program in Section 1.4.3).

On the other hand, the author of the law review article does have that legal knowl-
edge and has summarized in his article how application of that knowledge (i.e.,
of the rules and cases concerning jurisdiction, legal subject matter, and choice of
law) justifies his conclusion. If Watson can be trained to recognize and extract those
arguments explaining legal conclusions, it would be able to point human users to
the author’s explanation, even if Watson could not itself construct the explanation
from first principles. Even then, of course, there is an issue about whether the article
and its explanation are still current.

1.4.2. Question Answering vs. Reasoning

This raises a question: Can a program based on Watson’s technology ever really rea-
son? Could it, for example, analyze a first-year law school problem in contract law?
In the above quote, IBM’s Counsel, Robert Weber emphasized “sound reasoning”
and declared parenthetically that “We're pretty sure it [Watson| would do quite well
in a multistate bar exam!” (Weber, 20m1).

But, could the Watson technology handle the essay part of a state bar exam? Or
could it do so only if someone (Google?) has happened to store the contents of old
exam blue books (assuming computerized analysis ever manages to “read” law stu-
dents” handwriting, a superhuman task if ever there was one)? Will it only(!) be a
highly sophisticated technique for retrieving past answers to similar questions, and,
perhaps, for highlighting the evidence (syntactic features and semantic clues in the
text concerning concepts and relations) that justifies its confidence in its answer?
Will it be able to adapt past arguments to a new problem? Or will it be able to solve
the new problem from first principles and explain its reasoning?

In order to gain some insight into the kind of legal reasoning involved in address-
ing a bar exam essay question, let’s briefly examine a classic CMLR by Ann Gardner
(her program was unnamed but let’s call it AGP) which already in the 198os had
analyzed legal issues from typical first-year law school contracts course final exam
problems (Gardner, 1987).

AGP is offered here as an example of a systematic approach to computation-
ally modeling legal reasoning about exam questions involving contract law and as
a contrast to the Watson approach.

Gardner’s First-Year Contracts Problem Analyzer

Anyone who has attended law school will recognize (probably with a shudder) the
type of problem AGP handled: A putative buyer and seller exchange two weeks’
worth of chronologically overlapping and sometimes inconsistent telegrams and pur-
chase orders concerning a possible purchase of a carload of salt. Having sent an

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 19

Rajectian;
resoation aposptance

2 !
J
Counkerafter, -
iadificatian
of offer
o ({_,..—-—-—..\.7 L4 R
| o 1 | X b rjmction;
| J 1 4 madify rervoc ation
g --./k“'--—-—-"').._ i sleeih
Razjecrion
revns Ao
daath
Acceptance ¥ o
phus praposal 12}
b il 1y g
Coariberofar;
Rujiectian; acmeptance pls
rewocation acceghance proposal ko muodify

FIGURE 1.2. ATN for offer and acceptance problems with four states: (o) no relevant
legal relations; (1) offer pending; (2) contract exists; (12) contract exists and proposal to
modify is pending (Gardner, 1987, p. 124)

apparent acceptance of an apparent offer, the buyer finds a cheaper source and sends
a telegram purporting to reject. The question is “Has a contract been concluded?”

The inputs to AGP were descriptions of this type of offer and acceptance problem
represented by a human (Gardner) in a logic language (illustrated below). AGP used
an augmented transition network (ATN) to analyze such problems and output an
analysis of the contracts issues.

An ATN is a graph structure that analyzes problems involving sequences of
events as a series of states and possible transitions from one state to the next. It is
“augmented” with rules that define each such possible state transition.

AGP’s ATN, shown in Figure 1.2, represented legal states in the analysis of an offer
and acceptance problem in contract law (i.e., no relevant legal relations (o), offer
pending (1), contract exists (2), contract exists and proposal to modify is pending (12)).
The arcs represented events or transitions from one legal state to another: from no
relevant legal relation (o) to an offer pending (1) via an offer, from an offer pending
(1) to contract exists (2) via an acceptance, etc.

Fach arc had associated with it the rules of contract law dealing with offer and
acceptance. These rules set forth the legal requirements for moving from one state

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

20 Computational Models of Legal Reasoning

to the next. For instance the offer arc from (o) to (1) has one associated rule, the def-
inition of “offer,” based on Restatement of Contracts, Second, section 24: “An offer is
the manifestation of willingness to enter into a bargain, so made as to justify another
person in understanding that his assent to that bargain is invited and will conclude
it” (Gardner, 1987, p. 142).

AGP processed events in the problem in chronological order, storing its analysis in
a detailed analysis tree and summarizing it in an output summary tree. The program
repeats the following steps until it has processed each event in the problem:

1. 'Take the next event in the problem.

2. Find out the current state from the detailed analysis tree. Determine from the
ATN the possible arcs out of that state.

3. For each possible arc, test if the event satisfies the rules associated with the arc
and update the detailed analysis tree with the test results.

4. If the test involves a “hard” legal question (see below), that is, presents two
legally defensible ways of evaluating the event, insert a branch for each
interpretation into the detailed analysis tree.

5. Edit the detailed analysis tree to update an output summary tree of network
states representing the different “interpretations” of the events.

For example, AGP starts with a first event:

On July 1 Buyer sent the following telegram to Seller: “Have customers for salt and
need carload immediately. Will you supply carload at $2.40 per cwt?” Seller received
the telegram the same day.

The events were input not in English text, but in a logic-based representation
language. AGP could not read text, so a human had to manually represent that infor-
mation in the logic representation (i.e., predicate logic, defined in Section 2.3.2). For
instance, some excerpts of the representation are:

(send Sendz) (agent Send1 Buyer) (ben Send: Seller) (obj Sendi Telegrami)
(telegram Telegrami) (sentence S13) (text S13 “Will you supply carload at $2.40 per
cwt?”)

(prop-content S13 Prop13) (literal-force S13 O13)(yes-no-question Q13)
(effective-force S13 R13) (request R13).

(Gardner, 1987, pp. 89, 105, 111)

In the above representation, Sendu is an instance of a Send with the Buyer as the
Agent, the Seller as the Beneficiary, and Telegrami, an instance of a telegram, as the
Object of the sending. S13 is a sentence whose text is quoted, whose propositional
content is represented in Prop13 (defined elsewhere), whose literal force as a speech
act is to pose a question but which also effectively presents a request (Gardner, 1987,
pp- 89, 105, 111).

In step (3), testing if the event satisfies the arc, the program collects the rules associ-
ated with the arc. Like the events, all of the contracts rules were translated manually

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 21

into the logical language. For instance, the rule associated with the arc from (o) to (1)
defining an “offer,” Restatement of Contracts, Second, section 24 (above), includes
rule antecedents and (italicized) predicates like the following:

1. 'There is a manifestation with some symbolic content about an exchange by some
agent, the prospective offeror.

2. The terms of the exchange are specified with reasonable certainty.

3. By means of the content of the manifestation, the prospective offeror has per-
formed some speech act that invites acceptance by a prospective offeree of a
proposal for the exchange.

4. The offeree is invited to furnish consideration in the exchange and the prospec-
tive offeror is apparently ready to be bound to a contract for the exchange,
without doing anything more (Gardner, 1987, pp. 142).

The program checks if the rule’s antecedents are satished given the facts of all
the events processed so far plus the new event. Basically, AGP attempts to bind the
artifacts of the problem to the variables in the rule guided by very limited information
about what the facts and the antecedents mean.

At any step, there are multiple possible ways to bind the facts and antecedents.
The program needs to search through all the possible bindings, leading to a detailed
analysis tree with multiple branches. As noted, “hard” questions also lead to branches
representing alternative reasonable interpretations. In order to prevent an “exponen-
tial explosion” of alternative paths, an editing function prunes the branching analysis
using heuristics to focus on the most promising branches.

Incidentally, recent work on so-called “smart” contracts employs finite state
automata related to the ATN in Gardner’s CMLR (Flood and Goodenough, 2015,
p- 42). Researchers have also applied heuristic rules to model the United Nations
Convention on the International Sale of Goods and to deduce the temporal legal
states of affairs as events occur in the life of a contract (see Yoshino, 1995, 1998).

Gardner’s heuristics are a typical example of an Al approach to enable a computer
program to handle a task that is taxing even for humans. Law students need to decide
on which of the multitude of cross-communications and their contents to focus at
any point in their analyses of whether there is a contract.

Gardner’s Algorithm for Distinguishing Hard and Easy Legal Questions
Law students (legal practitioners and judges) also need to learn how to distinguish
hard and easy questions of law, a determination that takes into account an appre-
ciation of the facts and the substantive legal issues, as well as procedural issues
concerning who has the burden of raising the question.

This is a problem that has deep roots in legal philosophy (see, for example, Fuller’s
critique of Hart’s assertion that legal terms have core and penumbral meanings (Hart,
1958; Fuller, 1958)). It also has very practical ramifications. A clinic intake advisor,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

22 Computational Models of Legal Reasoning

&, For every prodicats i nde, apgly 3 st
1. CommonienseKmowiedpe-Answer: Dosg Commansenia
knowikedpe nde provid e an arewer?
& Pos-Eapenpies: Does problem melch positee @eaimpies of
predcate?
I Mg Evamp {izpy mrahl match regotie exareples of
B T Ly

&

If not CommanSensed nawlevipe. Aeouer
¥ sk { Pon-Fuirrplen e Neg-Cenmyled]) = Queshion hard
¥ {anly ane ol fex-Evampien § Meg-Frampiec| s Ousition sooy
1# { Pos-Exmales and Meg-Eroraler] S Questian hioed

Il Cewrama nfen ek i ownclae- e
1# reak ([Fos-Fxoragdes or Neg-Examyies] = Queshion sooy
IF (el canvis il Poi-Evaeniiee § Meg-Evaspio)

If jagraes ordy-one with CommonSeose Dnowlesoe-dnsasey] =8
oeshion sasy

else (uestion bard
H {Pis-Exarirahes and Wer-Exgmmples) S+ Questian hond
FIGURE 1.3. Gardner’s heuristic method for distinguishing hard and easy legal questions

(Gardner, 1987; Rissland, 199o)

for instance, needs a way to distinguish clients’ easy and hard legal questions in order
to direct them appropriately.

From the viewpoint of computational modeling, however, distinguishing hard and
easy questions of law presents a conundrum. As Gardner noted, for a computer pro-
gram to apply a method for distinguishing hard and easy questions, the method must
itself be “easy.”

AGP employed a heuristic method for distinguishing hard and easy questions of
law (Gardner, 1987, pp. 160-1). Figure 1.3 depicts Edwina Rissland’s algorithmic reca-
pitulation of AGP’s method for distinguishing hard and easy questions (Rissland,
1990).

For every predicate in a rule, the method involves testing whether a commonsense
knowledge (CSK) rule provides an answer, or whether the problem matches positive
examples of the predicate, negative examples, or both. For instance, if no common-
sense rule provides an answer, but there is a match to a positive instance, the question
is easy. If, however, a negative instance also matches, the question is hard.

Consider the requirement of there being a manifestation of willingness by the
prospective offeror to enter into a bargain. As operationalized for AGP, the offeror
must have performed a speech act that invites acceptance by a prospective offeree of
a proposal for an exchange. Whether there is such a manifestation does not, perhaps,
usually present a hard question of law, but it is litigated from time to time. In princi-
ple, AGP has a way to decide if it presents a hard question in a particular case. If there
is a commonsense rule-like definition of manifestation (or of an appropriate speech

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 23

act), and some instances of positive or negative examples of manifestations, AGP can
apply them to the facts of the problem, and follow the heuristic in Figure 1.3.

By the time AGP completes its analysis of all of the events in an offer and accep-
tance problem, it has prepared a detailed analysis tree, traversals of which effectively
provide a trace of its reasoning and an explanation of its answer. For instance, in
AGP’s analysis of event 1 above, it concludes that there is a pending offer, having
found in the buyer/offeror’s telegram a manifestation of an apparent and reasonably
certain readiness to be bound to an exchange (see Gardner, 1987, Fig. 7.1, p. 165).

AGSP illustrates some issues that a program like Watson would need to address if
it were to be applied to tackle bar exam essay questions. Computationally modeling
legal reasoning about contracts problems requires some model of reasoning with
legal rules and concepts. It needs to distinguish between hard and easy questions
of law. It also needs an ability to explain its reasoning, and that reasoning has to be
intelligible to legal practitioners.

The Watson program that won the Jeopardy! game did not explain its answers. If
it did explain its answers, it would probably do so in terms of the syntactic features
and semantic clues in the text concerning concepts and relations that justified its
confidence in its answer (Ferrucci et al., 2010, p. 73). That kind of an explanation,
however, is not likely to correspond to what legal practitioners would expect.

Even if Watson could not perform the kind of reasoning AGP models, could it
recognize the features of prior legal explanations and arguments, such as those in
old exam blue books from past law school or bar review essay exams, and adapt them
to a new problem? Would it be able to recognize when these arguments are relevant
to users’ queries? What level of detail could it recognize in prior explanations and
arguments? Could it recognize not only the legal rules but also the application of the
legal rules to the facts of a problem? Could it recognize arguments that particular
rule antecedents are satisfied or not?

These are the kinds of questions discussed in detail in Part III of this book, but let
us begin to explore them here.

1.4.3. IBM’s Debater Program

Can Watson be trained to recognize and extract arguments from texts? It appears that
the answer is “yes”! In Spring 2014, an IBM executive demonstrated a new program
named “Debater,” a descendant of Watson that employs some of the text processing
technology of the Watson program to perform argument mining (see, e.g., Newman,
2014, demo at Dvorsky, 2014).

On any topic, the Debater’s task is to “detect relevant claims” and return its “top
predictions for pro claims and con claims.” In the example of Debater’s output, upon

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

24 Computational Models of Legal Reasoning

Tha sahe of vialent videagarmes 1o mences chould b Bannod

| Con: O the-other kand, | woald like ko
!rrule the fallowsng claims that oppos=
| tha topic. Viclence Invideo games
IrHI' cagmally linked with aggressren

Pro: Exposune to wicleng

Vit gRMEE resuis in incroased
physiolopice! arousal, aggreasion-
rodatiod teow s and Teslings, &

will & decressed pro-sodal I.' | iy !_'mud-;'-rru.-:
b hawiior / [4 I

R

A

i

Pra; in addition, these violent g o | i | Cne in additon, mast crddren who pliy
Fyrics schually cavss adolescenista | b | volent videogamesda not b
comenig ack of realk-lile aggression I [prahkeens
Pra: Fnalky, wiolen? video games can Com; FinaSy, widso geme play & parl al &
mycresse chelcren's pggression, mbolEsient 'y normul sodil setting

FIGURE 14. Argument diagram of IBM Debater’s output for violent video games topic
(root node) (see Dvorsky, 2014)

inputting the topic, “The sale of violent video games to minors should be banned,”
Debater:

1. Scanned 4 million Wikipedia articles,

Returned the 10 most relevant articles,

Scanned the 3,000 sentences in those 10 articles,

Detected those sentences that contained “candidate claims,”
“[1]dentified borders of candidate claims,”

“|Alssessed pro and con polarity of candidate claims,”
“Constructed a demo speech with top claim predictions,”
Was then “ready to deliver!” (Dvorsky, 2014)

O vt AW N

While Debater’s output in the video was aural, one can present the text of its out-
put in visual terms. Figure 1.4 shows an argument diagram constructed manually
from the video recording of Debater’s aural output for the example topic (available
at Dvorsky, 2014). The box at the top (i.e., the “root node”) contains the topic proposi-
tion. Nodes linked to it with solid-lined arrows (i.e., “arcs”) support that proposition;
the dashed arcs attack it. The elapsed time from inputting a topic to outputting
an argument reportedly is from three to five minutes. In subsequent presentations,
Debater’s output has been demonstrated for other diverse topics.

Debater’s argument regarding banning violent video games in Figure 1.4 invites
comparison to a legal argument involving a similar topic shown in Figure 1.5. It
concerns the constitutionality of California (CA) Civil Code sections 1746-1746.5
(the “Act”), which restricted sale or rental of “violent video games” to minors.
The Court in Video Software Dealers Assoc. v. Schwarzenegger, 556 F. 3d 950

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

L00°08€19/91E18/6//10L°0L/DI010p//:5d13Y "Swa1/2400/610 9bpLiquied mmm//:sdily Je ajgejieae ‘asn jo

U191 340 abpliquied ay1 03 193[gNs ‘€6:1 1101 38 £10Z BNy 80 UO ‘epLIoj4 40 ANsIaAIun "8103/6.10 a6pliquied mmm//:sd1y Wwoly papeojumod

ibudie (o wppoe #y argemesat
o @ cwaal eFert beraesn

Thee SEabe reked haady an ihe
weark of O, Craig Anderson and
s 30 updaved met-analyss. =

L &

The Sabe Fas not
"pompEing
in barning the esle ol wiclent

Althoagh ae do fal fgeine
the Siate to g monsirate o
".idll'ﬂﬂ'.l:llﬁﬂt",'tlﬁ
Skaiw s not mel B
L b0 d ernitals a
d compaling inerest
The Stabe redies on stadies by Ors Geable s Furk
el withes gamed can leod merses b be e Iesdle
wred degensitaed ba viohenoe.
[]
@& :

These studies presesi only & afenuated path

it wden garms vidience and desecahEalion and
iy lamim char g e Badd &0 Sarnearios priepies
wrecd 1 hiat "easnality was nok dtuadied.”

£-

bor. Anderion’'s resmarch kan Nawaincleding it
metrent from the rhedy of the prychological
efects of video games i relared w e age of
the persan shadied.

Altkaugh mal dapaaitive, ather courts have repcted
G, kedersor's reseanch or found o inse®cient to

evlablish @ cousal lish. e Keddn'ck, 384 F 54 o8 5TE;
Sramain.

FIGURE 1.5. Diagram representing realistic legal argument involving violent video games topic

25

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

26 Computational Models of Legal Reasoning

(gth Cir. 2009) addressed the issue of whether the Act was unconstitutional under
the 1st and 14th Amendments of the U.S. Constitution. As a presumptively invalid
content-based restriction on speech, the Court subjected the Act to the strict scrutiny
standard.

The Court held the Act unconstitutional because the State had not demonstrated
a compelling interest that “the sale of violent video games to minors should be
banned.” Figure 1.5 shows excerpts from the portion of the opinion in which the
Court justified this conclusion. The nodes contain propositions from that portion
and the arcs reflect the explicit or implied relations among those propositions based
on a fair reading of the text. As above, the solid arrows signify that the proposition
in the node at the base of the arrow supports the proposition in the node to which
the arrow points; dashed arrows signify an attack relation. Thus, nodes a, b, ¢, and
d contain propositions on which the State of CA relied to support its compelling
government interest. Nodes e, f, and g contain propositions the Court employs to
attack the State’s propositions.

The argument diagrams in Figures 1.4 and 1.5 address nearly the same topic and
share similar propositions, reflecting the fact that the Court’s argument addresses
some of the very same kinds of reasons and evidence as Debater’s argument.

The callout boxes in Figure 1.5, however, illustrate some key features of legal argu-
ment evidenced by the Court’s argument. In particular, (1) legal rules and concepts
govern the Court’s decision of the issue. (2) Standards of proof govern its assess-
ment of evidence. (3) The argument has an internal structure; support and attack
relations connect the various claims. (4) The Court explicitly cites authorities (e.g.,
cases, statutes). (5) Attribution information signals or affects the Court’s judgments
about belief in an argument (e.g., “the State relies”). (6) Candidate claims in a legal
document have different degrees of plausibility.

This is not to criticize Debater’s argument, which is not and does not purport to
be a legal argument.

On the other hand, given the intention of applying Watson and, presumably,
Debater to legal applications and argumentation, the comparison emphasizes the
importance of addressing these features of legal argument if and when Debater is
applied in a legal domain. It would be essential that Debater can identify the types
of concepts, relationships, and argument-related information enumerated above and
illustrated in Figure 1.5 in order for the system to be able to recognize and interpret
legal arguments. A program so endowed could improve legal information retrieval,
focusing users on cases involving concepts, concept relations, and arguments sim-
ilar to the one the human user is aiming to construct. It could also highlight and
summarize the relevant arguments for the user’s benefit (see Section 11.3).

Finally, if the system were to perform any automated reasoning based on the
retrieved texts in order to assist the user in solving his/her problem, such as by com-
paring arguments, predicting outcomes, or suggesting counterarguments, it would
need an ability to identify concepts, concept relations, and arguments in the texts.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 27

It is in this connection that the kinds of legal reasoning argument models and
argument schemes described in Part I will likely be essential. This is the focus of
Section 12.3.

1.4.4. Text Analytic Tools for Legal Question Answering

Watson’s fundamental task was to answer questions. In the context of the “Jeopardy!”
game that was enough to beat the reigning human champions.

Legal OA could be a great boon to making legal knowledge more accessible. Imag-
ine the utility of a service that answers questions about landlord tenant law in a large
metropolitan area. Of course, lawyers know that legal OA can be quite complex. An
answer needs to be tailored to the questioner’s circumstances. It matters, for example,
if the apartment building is in Toronto, Canada, or Toronto, Kansas. Explanations
and arguments need to be provided. Assumptions need to be clarified on which the
answer is based and which often limit its applicability.

Many practical legal questions, however, do not require explanation and argu-
ment. At a November 2014 workshop in IBM’s Chicago offices, Paul Lippe of Legal
OnRamp (LOR) demonstrated an application with a large corpus of contracts involv-
ing two corporations engaged in a high volume of repeat transactions over time
(Legal OnRamp, 2015). Corporate legal staffs involved in contract monitoring and
maintenance would like to be able easily to answer such questions as: Which con-
tracts include certain terms or term language such as a disclaimer of liability for
consequential losses? For which contracts is a particular type of term embedded in
the body of the contract as opposed to in an appendix? Such queries may be quite
useful. For instance, certain terms may need to be updated frequently, and it may be
easier or cheaper to do so if the terms are located in a contract’s appendix. Finding
the contracts in a large corpus with such a term in the body can assist the legal staff
to target contracts that should be restructured.

Such queries cannot be easily and reliably answered with ordinary information
retrieval tools. Using Boolean searches and keywords, one cannot easily specify loca-
tions within a contract structure or deal with the wide variety of language with which
certain kinds of terms may be expressed. For instance, consider the variety of ways
in which a disclaimer of liability for consequential losses can be expressed.

In answering questions, Watson analyzes the question, searches for candidate
responses from a text corpus, and ranks the candidates according to its confidence
that each candidate addresses the question.

Question analysis means analyzing the question text for clues “to determine
what [the question] is asking about and the kind of thing it is asking for.” This
includes parsing the question text, which “produces a grammatical parse of a sen-
tencel,] identifies parts of speech and syntactic roles such as subject, predicate, and
object, [and identifies how some sentence segments relate to other] sentence seg-
ments.” This also includes decomposing suitable questions into “useful and relevant

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

28 Computational Models of Legal Reasoning

subparts.” The query analysis process does not result in one certain interpretation
of what the query means. The “parsing and question analysis result in multiple
interpretations of the question and . .. a variety of different queries” (Ferrucci, 2012,
pp- 6, 9)-

Retrieval and ranking involves searching for candidate answers for each of the
query interpretations. “These queries are run against different sources to first gener-
ate a broad set of candidate answers.” This leads to generating multiple hypotheses
about what the query means and how to answer it. “Each candidate answer com-
bined with the question represents an independent hypothesis.” “Each [hypothesis]
becomes the root of an independent process that attempts to discover and evaluate
supporting evidence in its candidate answer” (Ferrucci, 2012, p. 6).

The system uses a set of evidence scoring programs to rank the candidate answers
by the likelihood that the answer addresses the question and to assess its level of
confidence in the answer’s correctness. “Each evidence—answer pair may be scored
by 100 independent scorers. Each scoring algorithm produces a confidence. For any
one candidate, there may be on the order of 10,000 confidence scores — on the order
of one million in total for a single question” (Ferrucci, 2012, p. g).

Judging the likelihood that each candidate answer is correct is a matter of combin-
ing weights associated with the different evidence scores. Watson learns the weights
associated with the evidence scores “using a statistical machine learning framework”
(Ferrucci, 2012, p. 9).

Thus, in constructing a contracts QA facility, it is likely that the LOR team devel-
oped a set of concepts and relations for distinguishing among different types of
contractual terms or provisions and for identifying structural features of the contracts.
Such concepts probably included InContractBody, InAppendix, LiabilityDisclaimer,
ConsequentialDamages. The team probably manually annotated a subset of con-
tracts (a training set) for these features. The Watson system then learned statistically
to associate various syntactic and semantic information with these features and
applied them to annotate the remaining contract texts (the test set).

Figure 1.6 shows a high-level architecture for analyzing texts of legal documents
including contracts. Given a query, the program analyzes the question, translates
it into a set of structural and conceptual feature constraints on the type of answer
sought, identifies candidate documents responsive to the question, and then ranks
the candidates. In the contracts application, there may be only a few evidence
scorers, some more useful in answering structure-type questions, others better for
answering questions regarding provision type. The weighted utilities between evi-
dence scores and types of questions would not be hardwired butlearned from positive
and negative instances of question/answer pairs.

For semantic text analysis and conceptual information retrieval, two additional
tools, shown in dashed boxes in Figure 1.6, are helpful. Relation extraction and
concept expansion help to analyze questions and retrieve candidate answers from
a corpus.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 29

Cruestion Relation
Quapy =g T =
analysis extraction
¥
Strectural) ‘.
w
| coneeptual
Identify candidate -
darlify candidate Fagtimm Eunce.'::t
documents ERpARLion

contiraints an
| angwer type

- R,
Evidence scorers Construct

| : p————————s Recponse
| rank candidatis answer P

FIGURE 1.6. Architecture of text analyzer for legal documents including contracts.
Dashed boxes show components for semantic analysis and conceptual information
retrieval

Relation extraction attempts “to find semantic relationships (e.g., [a person may
have] starred in, visited, painted, invented, [or have been] naturalized in) between
concepts, although they may have been expressed with different words or with
different grammatical structures” (Ferrucci, 2012, p. 7).

A system’s ability to identify a conceptual relationship, for instance, a particular
kind of party signing a particular kind of agreement, is essential for specifying the
constraint for purposes of conceptual information retrieval and prediction (see Sec-
tion 4.5.2). In the above contracts example, the concept of LiabilityDisclaimer may
be expressed in a variety of ways, for instance, “disclaims liability for incidental or
consequential damages,” “assumes no responsibility for any loss,” or “undertakes no
liability for any loss or damage suffered as a result of the misuse of the product,” all
of which the program must learn are instances of LiabilityDisclaimer.

Another example involves claims under a federal statute for injuries caused by
vaccines (see Section 10.5). One might seek to retrieve all cases involving assertions
that:

<specific-vaccine> <can cause> <generic-injury>

For instance, a court may have held that “DPT vaccine can cause acute
encephalopathy and death,” a case that would be a useful point of reference to an
attorney representing a decedent who had suffered a similar circumstance. A sys-
tem’s ability to identify a causal relationship between a specific vaccine and a type
of injury would be essential if the system is to preferentially rank such a case and
highlight its finding for the benefit of the user.

In a different legal context, one may wish to retrieve all trade secret misappropri-
ation cases where the:

<defendant> <signed> <nondisclosure-agreement>

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

30 Computational Models of Legal Reasoning

Some examples drawn from real trade secret cases include:

1. Newlin and Vafa had signed nondisclosure agreements prohibiting them from
using ICM software and tools upon leaving ICM.

2. Ungar signed a nondisclosure agreement.

3. Defendant Hirsch was employed by plaintiff, where he executed a nondisclosure
agreement (Ashley and Briininghaus, 2009, p. 141).

Concept expansion identifies “concepts that are closely related to those given in
the question,” which may be key to “identifying hidden associations and implicit
relationships” (Chu-Carroll et al., 2012, p. 1).

For instance, in the above legal examples of conceptual legal information
retrieval, various concepts would need to be expanded:

<nondisclosure-agreement> includes: ‘nondisclosure agreement’, ‘agreement
not to disclose’, ‘employment contract with a nondisclosure clause’

<noncompete-agreement> includes: ‘noncompete agreement’, ‘noncompeti-
tion agreement’, ‘covenant not to compete’

<varicella-vaccine> includes: ‘varicella vaccine’, ‘Chickenpox vaccine’,

‘VARIVAX’

It is apparent in these examples of relation extraction that relevant concepts like
“vaccine,” “tosign,” or “nondisclosure agreement” can be expressed in multiple ways.
Concept expansion identifies semantically related concepts in a corpus, in effect,
deriving a dictionary or thesaurus rather than starting with one.

1.4.5. Sources for Text Analytic Tools

Tools like those in Watson have become available commercially as web-based
services. As noted, IBM is attempting to capitalize on its investment in the Watson
system by making a selected set of Watson’s functionalities available for develop-
ers in a commercially convenient form. IBM offers a variety of services under the
[BM Watson Developer Cloud (also referred to as Watson Services and BlueMix)
for building cognitive apps (IBM Watson Developer Cloud Watson Services, 2015).
These are commercial services subject to license and to license fees. Versions are
also available for academic research, such as AlchemyLanguage, a set of text analy-
sis/natural language processing (NLP) tools (IBM Watson Developer Cloud Watson
Services, 2016).

Whether or not one wishes to avoid using IBM’s proprietary tools, the Watson ser-
vices are an instructive example for anyone interested in the future of legal practice.
Even absent an ability to directly access the services, the framing of the tools on the
website is instructive. It represents a creative effort by IBM to demonstrate how the
new text analytic technologies can be packaged in an accessible form. IBM’s efforts
provide at least one example of the kinds of IF services that are needed, how to
group them, and how to present them to noncomputer programmers (IBM Watson
Developer Cloud Watson Services, 2015).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 31

Presumably, IBM will not be the only source of such tools in the future.
Open-source alternatives are currently available in a rougher form that requires
developers to adapt them. As noted, IBM Watson is built on the UIMA platform,
an open-source Apache framework that has been deployed in several large-scale
government-sponsored and commercial text processing applications (Epstein et al.,
2012). Academic researchers in the UIMA community are developing alternative
open-source versions of tools like the above. For instance, Grabmair et al. (2015),
discussed in Sections 6.8, 10.5, 11.3, and 11.4, demonstrate the utility of open-source
tools for extracting argument-related information from legal texts (involving the cor-
pus of federal vaccine compensation cases mentioned above) and using it to improve
a full-text legal information system’s ranking of retrieved documents.

Those who wish to create legal applications based on either the Watson Devel-
oper Cloud services or UIMA tools still have to solve some challenging problems.
We illustrated a few of these problems above in contrasting Watson’s and Debater’s
outputs with what legal problem-solving demands. It is the goal of this book to
frame these problems so that students and other developers can tackle them with
the techniques and tools that the Al & Law field offers.

1.5. A GUIDE TO THIS BOOK

It is intriguing to imagine how a QA text-analysis program could both answer legal
questions and provide explanations and arguments that a legal practitioner could
credit. Will there be a software service for:

Generation of explanations and arguments in law: assists in structuring explanations
of answers and supportive legal arguments?

That has not happened yet, however, and before it does, researchers will need to
answer two questions: How can text analytic tools and techniques extract the seman-
tic information necessary for AR and how can that information be applied to achieve
cognitive computing?

Readers will find answers to those questions in the three parts of this book.

Part I introduces more CMLRs developed in the Al & Law field. It illustrates
research programs that model various legal processes: reasoning with legal statutes
and with legal cases, predicting outcomes of legal disputes, integrating reasoning
with legal rules, cases, and underlying values, and making legal arguments. These
CMLRs did not deal directly with legal texts, but text analytics could change that in
the near future.

Part II examines recently developed techniques for extracting conceptual infor-
mation automatically from legal texts. It explains selected tools for processing some
aspects of the semantics or meanings of legal texts, including: representing legal
concepts in ontologies and type systems, helping legal information retrieval systems

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

32 Computational Models of Legal Reasoning

take meanings into account, applying ML to legal texts, and extracting semantic
information automatically from statutes and legal decisions.

Part III explores how the new text processing tools can connect the CMLRs, and
their techniques for representing legal knowledge, directly to legal texts and cre-
ate a new generation of legal applications. It presents means for achieving more
robust conceptual legal information retrieval that takes into account argument-
related information extracted from legal texts. These techniques will enable some
of the CMLRs of Part I to deal directly with legal digital document technologies
and to reason directly from legal texts in order to assist humans in predicting and
justifying legal outcomes.

Taken together, the three parts of this book are effectively a handbook on the
science of integrating the Al & Law domain’s top-down focus on representing and
using semantic legal knowledge and the bottom-up, data-driven and often domain-
agnostic evolution of computer technology and I'T.

The recentness of the legal tech boom belies the fact that Al & Law researchers
have already invested a great deal of thought in how to model legal reasoning. This
book does not aim to provide a complete history of that research. Instead, it high-
lights selected trends in the development of CMLRs and CMLAs and explains their
implications for the future given the opportunities for integrating text analytics.

Nor does this book cover all of the ways in which legal tech start-ups are har-
nessing data to predict legal outcomes. Instead, the focus is on how to employ and
integrate semantic legal knowledge into predicting outcomes and explaining predic-
tions. Over years of pursuing a methodology that is both empirical and scientific, Al
& Law researchers have discovered what works in computationally modeling legal
reasoning and what does not. By carefully attending to these lessons, constraints,
and limitations, developers in the current legal tech boom interested in incorporat-
ing semantic legal knowledge may achieve AR and create a new kind of software
service, a cognitive computing legal app (CCLA).

The remainder of this section summarizes the book’s narrative in more detail and
serves as a chapter outline.

1.5.1. Part I: Computational Models of Legal Reasoning

The examples in Part I of rule-based and case-based programs that can perform intel-
ligent tasks such as legal reasoning and explanation, argumentation, and prediction,
all share something in common: giving reasons.

Reasoning means “the drawing of inferences or conclusions through the use of
reason.” Explanation is “the act or process of explaining,” that is, giving “the reason
for or cause of” or showing “the logical development or relationships of.” Argument
involves “a reason given in proof or rebuttal” or “discourse intended to persuade.”
Prediction means “an act of predicting”; to predict means “to declare or indicate in
advance; esp: foretell on the basis of observation, experience, or scientific reason”

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 33

(Merriam-Webster’s Collegiate Dictionary, 2015). In law, a reason in support of an
inference or conclusion usually involves asserting that a legal rule warrants the con-
clusion, citing an authoritative source for the rule, for example, a statute or an
applicable case, and explaining or arguing that the rule applies. (Circularity can
hardly be avoided in defining these fundamental inferential tasks!)

The models employ knowledge structures for representing information in the
statutory or court-made rules or in the facts of the cases and schemes of inference
and argument to process reasons. Heretofore, the knowledge representation struc-
tures had to be filled in manually, the source of the previously mentioned knowledge
acquisition bottleneck.

Much work, discussed in Chapter 2, has addressed constructing formal logical
models of statutory reasoning, a kind of model that probably is not yet ready to
automatically connect directly to legal texts. The chapter contrasts logical models
of reasoning with statutory rules and realistic statutory interpretation. It considers
some computational approaches to assisting humans to find and interpret statutory
rules that are alternatives to logical models and that may be able to connect with
legal texts.

Models of case-based legal reasoning, discussed in Chapter 3, address analogical
reasoning with legal cases or precedents, an important phenomenon in common law
jurisdictions that is more likely to result in successful applications of text analytics.
The chapter compares a number of case-based models in terms of: how the CMLR
represents legal information in cases, the aspects of legal reasoning with cases and
precedents the CMLR captures or misses, the extent to which the CMLR integrates
rules, cases, and underlying values, and the compatibility of the CMLR’s represen-
tational techniques with the new techniques for extracting information from texts.

Some computational models for predicting legal outcomes, described in Chap-
ter 4, are also ripe for applying text analytics. The chapter surveys case-based and ML
techniques for predicting outcomes of legal cases and assesses their compatibility
with text analytics.

The culmination of all of this work in Al & Law has been the development of
computational models of legal argument and legal argument schemes, described
in Chapter 5, completing Part I. The chapter focuses on CMLAs that unify reason-
ing logically with legal rules and analogically with legal precedents. The models
generate legal arguments, sometimes represented diagrammatically, for purposes of
planning written arguments, instruction, or public discussion of legal issues. Some
aspects of these models are also ready for applying text analytics.

1.5.2. Part II: Legal Text Analytics

Meanwhile, other fields of research and development, such as information retrieval,
OA, IE, and argument mining, have been perfecting techniques for representing

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

34 Computational Models of Legal Reasoning

legal concepts and relations. Programs can then process the concepts and rela-
tions semantically and computational models of legal reasoning can use them
intelligently. As explained in Chapter 6, this includes the development of legal
ontologies and, more recently in UIMA type systems of the sort employed in Wat-
son and Debater, and in LUIMA, an extended type system for legal domains. This
part addresses how to adapt these text analytic tools to achieve conceptual legal
information retrieval.

Some of the new text analytic techniques are already being integrated with com-
mercial legal information retrieval (CLIR) tools. Chapter 7 introduces current
technology for legal IR, explains these initial applications, and offers some new ones.
Chapter 8§ addresses how to apply ML to textual data in the contexts of e-discovery
(litigation-related discovery of evidence from electronic information including texts)
and legal information retrieval.

The text analytic techniques are extracting functional information from statutes
and regulations and argument-related information from legal cases. As explained in
Chapters g and 10, the techniques include rule-based extraction guided by LUIMA
types and ML adapted to corpora of legal decisions.

The statutory conceptual information of interest includes not only the topics and
types of statutes (e.g., regulatory domain and whether a provision is a definition
or prescription) but also functional information such as the agents that a statute
directs to communicate with each other. Conceptual information in cases includes
argument-related information such as whether a sentence states a legal rule for decid-
ing an issue, whether it is an evidentiary statement of fact about the case, or whether
it indicates an application of the rule or elements of the rule to the facts of a case.

1.5.3. Part lII: Connecting Computational Reasoning Models and Legal Texts

By integrating the models and tools of Parts I and II, programs can use the con-
ceptual information extracted directly from legal texts to perform legal reasoning,
explanation, argumentation, and prediction. Basically, the goal is for text analyt-
ics automatically to fill in the computational models” knowledge representation
structures. In this way, the Watson services and UIMA tools can reduce the knowl-
edge acquisition bottleneck, accomplish conceptual legal information retrieval, and
address the challenges mentioned above of legal OA including the need to explain
its answers. Part I1I explains how to make these connections and achieve CCLAs.
Chapter 11 addresses how to integrate the QA, IE, and argument mining tech-
niques with certain CMLRs to yield new tools for conceptual legal information
retrieval, including AR. Fortunately, these tools do not depend on processing all
of a repository’s documents. In designing a proposed legal app, it is not necessary
that a corpus be available wholesale for text processing to identify concepts, concept
roles and relations, and other argument-related information. Instead, the new text
processing techniques can be applied as a kind of filter between a full-text retrieval

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 35

system and human users. The filter is applied just to the documents retrieved as
relevant through traditional full-text retrieval searches, promoting the documents
that should be ranked higher in terms of the extent to which concepts, conceptual
relationships, and other argument-related information match the user’s need. Chap-
ter 11 demonstrates this filtering approach; argument-related information extracted
from legal texts improves a full-text legal information system’s ranking of retrieved
documents.

As explained in Chapter 12, these tools, in turn, can be integrated even more
fully with some of Part I's computational models of legal reasoning and argument
to create a new breed of legal apps in which computer and human user collaborate,
each performing the intelligent tasks it performs best. In a complementary way, the
computational models of reasoning, explanation, argument, and prediction will play
significant roles in customizing commoditized legal services. They provide examples
of the processes and tasks that may be adapted for the new apps and the concepts,
roles, and relations that should be implemented. The new legal practice tools, based
on information extracted with UIMA or other text analytic technology, can reason
with legal texts, enabling practice systems to tailor their outputs to a human user’s
particular problem. In effect, they are the means by which a commoditized legal
service, in Susskind’s terms, can be customized.

Chapter 12 presents the idea that legal information queries and QA should be
thought of as means for testing hypotheses about the law and how it applies. It intro-
duces the possibility that a legal app could engage users in collaboratively posing,
testing, and revising hypotheses about how an issue should be decided. Section 12.7
illustrates some practical use cases and the different kinds of legal hypotheses they
involve. Readers interested in a high-level view of how legal apps could address these
use cases might begin with the last chapter and then circle back to the beginning of
this book.

The new apps will be subject to some limitations. While current text analytic tech-
niques can extract much conceptual information, they cannot extract it all. Many
conceptual inferences are simply too indirect and require too much background
CSK to identify. Thus, it is an important empirical question how much can be
accomplished with current text analytic techniques. Before concluding, Chapter 12
explores these remaining challenges.

1.6. IMPLICATIONS OF TEXT ANALYTICS FOR STUDENTS

Legal instructors, law schools, and authors have been urging legal educators to focus
more on the developing technologies of legal practice. For example,

o Granat and Lauritsen (2014) identified 10 law school programs that focus stu-
dents on the technology of law practice. These programs cover such topics as
practice systems automating data gathering, decision-making, and document

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

36 Computational Models of Legal Reasoning

drafting, developing legal expert systems for public interest legal services and
legal clinics, redesigning legal processes, applying ML to legal data and legal
informatics.

o Georgetown University Law Center sponsors the Iron Tech Lawyer Compe-
tition. Law students are building legal expert systems and entering them in
competition (Iron Tech Lawyer, 2015). Additional information about some of
these activities may be found in Staudt and Lauritsen (2013).

o 'Two farsighted authors, Lippe and Katz (2014), have urged the legal field to
reckon specifically with the impact of Watson technology on the future of legal
practice.

This book is intended to help law students, computer science graduate students,
legal practitioners, and technologists to take up that challenge and to design and
implement legal applications of a kind that has not previously been technically
possible. As argued, the combination of new text analytic tools and computational
models of legal reasoning provides an opportunity for those who see potential in
implementing processes of legal practice computationally.

Law students and practitioners may not have computer programming expertise,
but they will not necessarily need it. What they will need is an ability to think about
legal practice in terms of engineering a cognitive computing process.

This book assumes readers do not have familiarity with computer programming.
The focus is not on computer code but, more generally, on systematic descriptions of
legal and computational processes. For instance, in each of the examples of CMLRs
of Part I, we examine: the legal process, the program models, and the assumptions
made, the inputs to and outputs from the program and how they are represented,
the computational processes (at a high level of description such as via architecture
diagrams, flow charts, and algorithms) with which the program transforms inputs
to outputs, concrete examples of the algorithmic steps transforming specific inputs
to specific outputs, how the researchers evaluated the programs, the strengths and
weaknesses of the approach, and its relevance given recent developments in legal
text processing.

Actually writing computer code is the last step in designing successful computer
applications. Key steps inevitably precede coding. They involve specifying require-
ments for the ultimate program and designing a high-level software architecture to
realize it. Only then do programmers attempt to implement the software. Recent
models of software development may focus on a modularized process involving
multiple, nested instances of these steps, but even then, specifying requirements
and a high-level design of a module always precedes the coding to implement it
(Gordon, 2014).

The pedagogical goal, therefore, is not to teach the reader computer programming
but how to propose and design apps that assist users in performing legal processes.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Introducing Al & Law and Its Role in Future Legal Practice 37

If the high-level designs are sound, there will always be computer programmers to
implement them.

Law students are ideally suited to engage in identifying legal processes to model,
specifying requirements, and designing high-level architectures. Law students are
continually introduced to legal processes that are new to them and instructed
how to perform the processes step-by-step. This occurs repeatedly in the first-year
curriculum, in moot court competitions, in legal clinics, in legal internships and
part-time jobs with law firms, corporate legal departments, and university tech trans-
fer departments, and in pro bono activities. Today, law students are also likely to
have used computer apps from a tender age. They are intimately familiar with the
new modes of communication, with the current interface conventions, and with
accessing web-based resources.

Along the way, the descriptions of computational models expose readers to a
variety of assumptions and uncertainties inherent in legal reasoning that affect
human legal reasoning. Indeed, law students study the sources of these uncertainties
throughout the law school curriculum. These assumptions and uncertainties present
some design constraints that Al & Law researchers have learned to avoid, finesse, or
accommodate in their CMLRs, and that will necessarily affect efforts to apply text
processing tools like those in Watson and Debater. Students will also learn how,
and the extent to which, the performance of these technologies can be measured
experimentally, and what the measures signify.

With respect to developing cognitive computing tools for legal practice, itis a time
of exploration, even for IBM. The Watson Developer Cloud is indicative of a trend
to make text analytic tools convenient to use even without computer programming
expertise. A well-formed proposal from a law school student, legal academic, or prac-
ticing attorney might well engage IBM’s material interest. This is not as far-fetched
as it may appear. Indeed, it has happened already. Law students at the University of
Toronto (that’s in Canada, Watson, in case you are reading this) have already engaged
in building legal apps in collaboration with IBM using Watson services (Gray, 2014).
They created the Silicon Valley start-up called Ross, discussed in Chapter 12. As an
extra incentive, IBM has announced a “$5 million competition ... to develop and
demonstrate how humans can collaborate with powerful cognitive technologies to
tackle some of the world’s grand challenges” (Desatnik, 2016).

Why couldn’t a law student win with a CCLA for cross-jurisdictional issues in
cybercrime and security? Tutoring students’ imaginations about what is possible may
be all that is necessary to enable them to design and propose such an app. This book
aims for that.

Cognitive computing in law will be happening soon!

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

Modeling Statutory Reasoning

2.1. INTRODUCTION

The Law is a domain of rules, and many of those legal rules are embodied in
statutes and regulations. Since rules can be expressed logically and computers can
reason deductively, computationally modeling statutory reasoning should be easy.
One simply inputs a fact situation to the computer program; the program identifies
the relevant rules, determines whether or not the rules’ conditions are satisfied, and
explains the answer in terms of the rules that applied or did not apply.

Building a computational model of statutory reasoning, however, presents chal-
lenges. As explained below, statutes routinely are vague, syntactically ambiguous as
well as semantically ambiguous, and subject to structural indeterminacy. If a com-
puter program is to apply a statutory rule, which logical interpretation should it
apply, how can it deal with the vagueness and open-texture of the statute’s terms,
or determine if there is an exception?

The chapter draws a contrast between deductively applying a statute and the
complex process of statutory interpretation, which frequently involves conflicting
reasonable arguments. Classical logical models may break down in dealing with
legal indeterminacy, a common feature of legal reasoning: even when advocates
agree on the facts in issue and the rules for deciding a matter, they can still make
legally reasonable arguments for and against a proposition.

Reasoning with statutes, however, remains a pressing necessity. The chapter exam-
ines various Al & Law approaches that address or finesse these issues: a normalization
process for systematically elaborating a statute’s multiple logical versions, a logical
implementation for applying a statute deductively, and more recent models of busi-
ness process compliance and network-based statutory modeling, both potentially
useful for cognitive computing.

Questions addressed in this chapter include: How can statutory rules be
ambiguous, both semantically and syntactically? How do lawyers deal with these

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 39

ambiguities, and how can computer programs cope? What are normalized legal
drafting, Prolog, and a Prolog program? What is depth-first search and how does it
differ from breadth-first search? What is legal indeterminacy and why is it a problem
for logical models of legal reasoning? How can logic programs assess business process
compliance with regulations? What problems do isomorphic knowledge representa-
tions of statutes address? What are citation networks and statutory network diagrams,
and how can they support cognitive computing?

2.2. COMPLEXITIES OF MODELING STATUTORY REASONING

Statutes and regulations are complex legal texts. An often intricate maze of provisions
written in legal technical jargon define what is legal and not. With their networks of
cross-references and exceptions, statutes and regulations are often too complicated
for the untutored citizen to understand. Even legal experts may have difficulty simply
identifying all and only the provisions that are relevant to analyzing a given question,
problem, or topic.

The field of Al & Law has long studied how to design computer programs that can
reason logically with legal rules from statutes and regulations. It has made strides,
and demonstrated some successes, but it has also developed an appreciation of just
how difficult the problem is. In the process, the field has identified a number of
constraints that need to be addressed or finessed in attempting to design a computer
program that can apply statutory rules. As noted, these constraints include vagueness
and two kinds of ambiguity in statutory rules, the complexity of statutory interpre-
tation, the need to support conflicting but reasonable arguments about what a legal
rule means, and practical problems in maintaining logical representations of statutes
alongside textual ones.

Of the two kinds of ambiguity that complicate computationally modeling statutory
reasoning, semantic ambiguity, and its cousin, vagueness, are familiar. The regula-
tory concepts and terms the legislature selects may not be sufficiently well defined
to determine if or how they apply. The second kind, syntactic ambiguity, may be
less familiar: the logical terms legislatures use, such as “if,” “and,” “or,” and “unless,”
introduce multiple interpretations of even simple statutes.

2.2.1. Semantic Ambiguity and Vagueness

Semantic ambiguity “is uncertainty between relatively few . .. distinct alternatives”
concerning a term’s meaning (Allen and Engholm, 1978, p. 383). “Vagueness is a
semantic uncertainty about precisely where the boundary is with respect to what a
term does and does not refer to” (Allen and Engholm, 1978, p. 382).

Both are due to the fact that legislatures may employ terms that are vague or oth-
erwise not well-defined. Waterman confronted the problem that ill-defined legal
terms present for constructing legal expert system rules (Section 1.3.1), and Gardner

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

40 Computational Models of Legal Reasoning

attempted to address it with her algorithm for distinguishing hard and easy legal
questions (Section 1.4.2).

Semantic ambiguity and vagueness are concessions to human, social, and politi-
cal reality. The legislature cannot fashion language sufficiently detailed to anticipate
all of the situations it may wish to regulate. Instead, it employs more general termi-
nology in statutory rules and relies on the courts to interpret and apply the abstract
terms and concepts in new fact situations. Intentionally rendering key provisions in
a semantically ambiguous way can also facilitate legislative compromise. If the legis-
lature attempted to use specific, detailed language, it might compound the difficulty
of obtaining political consensus (Allen and Engholm, 1978, p. 384).

Semantic ambiguity and vagueness, however, are also a source of legal indeter-
minacy: opponents can agree on what legal rule applies and what the facts are
and still generate reasonable legal arguments for opposing results (Berman and
Hafner, 1988).

Even when the legislative intent is clear and the statute’s language straightfor-
ward, legal adversaries routinely make reasonable but conflicting arguments about
what the rule’s terms mean. In their example, the case of Johnson v. Southern Pacific
Co.,117 Fed. 462 (8th Cir. 1902) rev'd 196 U.S. 1 (1904), a federal statute made it
“illegal for railroads to use in interstate traffic ‘any car not equipped with couplers

»

coupling automatically by impact.” According to the statute’s preamble, the act’s
purpose was “to promote the safety of employees ... by compelling carriers . .. to
equip their cars with automatic couplers . .. and their locomotives with drive wheel
brakes” (Berman and Hafner, 1988, p. 196).

There was no disagreement about the facts. “The plaintiff, a railroad brakeman,
was injured when he attempted to couple a locomotive to a dining car, in order to
move the dining car off the track.” Causation was not an issue: the plaintiff’s injury
was caused by the fact that although the locomotive was equipped with such a cou-
pler, it was not one that could couple automatically with this particular dining car.

Nevertheless, courts disagreed about whether the statutory rule’s conditions were
satished, and, in particular “on the meaning of all three of the predicates in the
condition part of this rule: the meaning of ‘car,” the meaning of ‘used-in-interstate-
commerce, and the meaning of ‘equipped’” (Berman and Hafner, 1988, p. 198).
Are locomotives included in the “cars” required to have automatic couplers or not?
Does “interstate commerce” include the time when a car is awaiting its next load or
not? Were the dining car and locomotive “equipped” with automatic couplers or not?
The trial and appellate courts disagreed on the answers to these questions and they
certainly did not treat those answers as determined by the terms’ literal meanings.

2.2.2. Syntactic Ambiguity

The other kind of ambiguity, syntactic ambiguity, arises from a different reality: statu-
tory language does not always follow a single, coherent logical structure. This results

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 41

in part from the properties of natural language text. Unlike mathematical and logi-
cal formalisms and computer code, text does not allow one explicitly to specify the

»

scopes of the logical connectors, such as “if,” “and,” “or,” and “unless.” The syntax of
a statute can also be unclear due to the language used in implementing exceptions
and cross-references. Exceptions to a provision may be expressed explicitly but even
implicitly and may appear not only within a provision but also in other provisions or
even in other statutes (Allen and Engholm, 1978).

Layman Allen demonstrated that syntactic ambiguity leads to multiple possible
logical interpretations of even relatively simple statutory provisions, with potentially
profound consequences for those subject to regulation. He provided an example

from a Louisiana statute defining a crime:

No person shall engage in or institute a local telephone call, conversation or con-
ference of an anonymous nature and therein use obscene, profane, vulgar, lewd,
lascivious or indecent language, suggestions or proposals of an obscene nature and
threats of any kind whatsoever. (Allen and Engholm, 1978)

Presumably, the legislature intentionally selected vague terms like “obscene” and
“indecent” with full knowledge of their open texture.

It is much less likely that they intentionally promulgated a criminal standard
with an inherent syntactic ambiguity: To be in violation of the statute, is it suffi-
cient that a call include either obscene language OR threats, or, as the defendant
in State v. Hill, 245 La 19 (1963) argued successfully at the District court, must it
include obscene language AND threats? The Louisiana Supreme Court disagreed,
it interpreted “and” as meaning “or,” seemingly violating a common law maxim that
criminal statutes should be strictly construed. Surely, it would have been better leg-
islative policy to issue a syntactically unambiguous standard (Allen and Engholm,
1978).

Allen described a systematic normalization process for identifying such ambigui-
ties. Given a statute, one:

1. Identifies the statute’s “atomic” substantive propositions and replaces them
with labels (S1, Sz, .. .).

2. Uses propositional logic to clarify the syntax of the statute.

3. Restores the text of the substantive propositions.

In propositional logic, symbols stand for whole propositions. Using logical opera-
tors and connectives, propositions can be assembled into complex statements whose
truth values depend solely on whether the component propositions are true or false.
Unlike, predicate logic, defined below, propositional logic does not consider the
components or structure of individual propositions (see Clement, 2016).

Applying the normalization process to the Louisiana statute yields a number of
versions including the two shown in Figure 2.1. Each version is an expression in
propositional logic, which renders its logical structure more clearly.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

42 Computational Models of Legal Reasoning

3]

81, a person engages in or insbitutes a 51, 2 person eApaees 0 o instihdes a
oCdl feipphone ca 1 2t L i NG G

and and

S2. 1Myt persces fherein P b E e S&. that pereorm therel (Wi
il e L E, ricdzni dgar i Il b
n f - i i TR, S i
" y nabioss I oI] an absc 1

or and

53, this per therein uses thr v 53. ths 1 I of arvy
g ki JtEnay 1 i

then L]

54 that parso unlaadul | 549, & i Fili f | |

54- 51,52, 54:-51, 52,53

54 - 51, 53,

FIGURE 2.1. Normalized versions of two alternative interpretations of the Louisiana
statute and corresponding Prolog rules (bottom) (Allen and Engholm, 1978)

2.3. APPLYING STATUTORY LEGAL RULES DEDUCTIVELY

A normalized statute in propositional logical form offers several advantages.

First, using propositional logic to clarify the syntax of the statute can make a com-
plex statute much easier to understand. For instance, Allen contrasts a complex
provision of the Internal Revenue Code (IRC section 354), which deals with the
tax treatment of exchanges of securities in certain corporate reorganizations, with
a normalized version as shown in Figure 2.2 on the right. The normalized version
identifies the “atomic” substantive propositions and employs indentation to convey
the simplified logical structure.

Allen also provided a kind of flow chart through the logic of the “propositional-
ized” version of the statute where every node in the graph is one of the requirements
of the statute (see Figure 2.3). The labeled nodes, S1 through So, refer to the labeled
propositions in the normalized version (right) in Figure 2.2.

The flow chart can be much easier to understand than the textual or even nor-
malized versions of the statute. It demonstrates three alternative paths through the
statute from a starting point of an exchange of securities in the corporate reorganiza-
tion (S2) to the desired conclusion of “no gain or loss” recognition (S1). These paths
remain more or less implicit in the textual and normalized versions (although Allen
combined the flow chart and the normalized version to make the paths explicit).

In the context of corporate compliance, for instance, such flow charts can help
to clarify obligations of the various corporate constituents. Corporate compliance
involves detecting and preventing violations of law by the agents, employees, officers

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 43

|4) Ganeral Rubs #

1) Ini Genaral, Mo gain or kes shall ba 5311, shack or seourities in 5 romoretion &
recogniced if stock . inos corporabion s pErty party i a rearganication are, in pursiEnce of
10 rearaniestion are, in purisircs of the the plan of recrpasl mton, excbanged solely for
gian of recegaralatian, eacrangd sofaky far | ooek or securites in such corporacion of in
sock ., B suth o8 pasty bathe another coeparation 3 party £o the
rearganizstion, rearganicatian, and

121 Limitabice, Paragraph {11 shall not apply if
18] the priropal amound of amy such
spcurices receiied ., oF
1BY any such seouritles g recaived and ro
vuih securicies ane surnendered,

3] Croes Rsdprance. For freat mant of the

excharge il eny progerty B recened which s

el pErEiried po e recHwid wder this . see

& 35R

[b] Esermptinn

i1) InGanoral. Subsection (3) saall not apply

10 e escSvange b pursusnce al @ plan of

regrganization within the meaning of § 360a]

117100, unlbess
1] the corparalsan Bo whach e aiiits ans
transfened acquires substardally ol of the
sty of the transferor . and,
|B] the stock, _ received by such frassferor,
. we dsIrkeiied in pursuance of 1 plas of
Tl amiatien

12l Cross Reference.. For speoal ndes for

certain eachanges im pursuance of glans of

mearganization withn the meaning of 4 368a]

111100, wee § 255

P2} Cirtaim Raibead Reargonizamien,
MNoswithetanding amy other prowisions of thés
subchapter, swhsaction (s (1] {and samuch of §
350 as refates ba this s=cton) shal apply #ith
roapect ta o plam of reanganizabion -, fara
ridraEd apprgeed |, undes § 7T of 1he

[53] 2. [a] 1. the prncpal amount of ary
sich pEcurines raoaroed does sob s e d the
prwogil drrasunt of ang such secor ithch
surrancisred. and
[Sa] 2. sl 2 it is not o that bath [a) some
such securities are recerved ard (b no such
sRCUTiTIS ane surrerderod, and
[55] Z. [a] 3. (@] the plaa of reo/ganiiahan
Iu re} nne withen the meaning of weckizn
358|a) [IliD], or
%6 & 4o X [o] L the corporation to
which the aseets are transfarnsd
ey subatantaly ol of e psets
af tha transfarnr of wch 3t and
571 2. 420 2. [b) . the stock,
secunbies, and cther poperties
g Cdued by sLach translirce, a6 wed as
the other properiies of such
transinror, are deiriured i
purszance of the plan of
reorganization, or
[58] 2. |y I whacher or figd e plan of
recrg sl zabion i one within the meoring of
section J681al, and
|58 2. |o} 2 the plam of reonganizasion & for
& rpirosd and iy approved by the mestale
Conmimseroa Cammissian under secica 77 ol
Hrer Bankrughoy &ct, or unoor seckicn 200 of
e Inberstate Commernce &ct, as beirg inthe
pubdic imtnres,

Banknaptoy Act, or under § 200 of the interstate | Then
Coamemert Act, &5 boing in the public ivtarest, | }59] 3. no gain or loss shallhe recognised.

F1GURE 2.2. IRC section 354 and a normalized version (right) (see Allen and Engholm,
1978)

and directors of a corporation, firm, or other business. Presenting an employee’s reg-
ulatory obligations in the form of a flow chart could help the employee understand
what is legal and what is not legal.

2.3.1. Running a Normalized Version on a Computer

Second, a statutory provision in propositional logic can be run on a computer! At
the bottom of Figure 2.1 are the two normalized versions of the Louisiana statute

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

44 Computational Models of Legal Reasoning

FIGURE 2.3. Flow chart for propositionalized IRC section 354 (see Allen and Engholm,
1978)

expressed in Prolog, a programming language based on so-called “Horn clause logic”
associated with artificial intelligence and computational linguistics.

The normalized versions of this statute are examples of simple propositional logic.
The version on the right, S4 :- S1, S2, S3, means “If S1 A S2 A S3=-S4,” where A
means “and.” The version on the left uses two formulas, S4 :- S1, Sz and S4 - S, S3
to implement the disjunction (i.e., the “or”) in the version.

Prolog interprets the Horn clauses, treating them as a program. For example, it
treats the horn clause on the right as saying, in effect, “To show S4, show S1, show
Sz, and show S3.7

By asking the user whether each substantive proposition S1, Sz, and S3 is true or
false, a computer can prove the truth or falsity of S4. In this way, the logic of the
statute is automated. The logic of these normalized versions of the statute is simple
enough to handle manually with truth tables. Nevertheless, a computer can also
process the propositional logic of more complex statutes like that in Figure 2.2.

2.3.2. Predicate Logic

One would also like to express the content of a statutory provision’s substantive
propositions, not just its overall logical syntax. This can be done with classical logic
(also known as predicate logic, predicate calculus, or first-order logic).

Classical logic is the formal logic known to introductory logic students as “predicate
logic” in which, among other things, (i) all sentences of the formal language have
exactly one of two possible truth values (TRUE, FALSE), (ii) the rules of inference
allow one to deduce any sentence from an inconsistent set of assumptions, (iii)
all predicates are totally defined on the range of the variables, and (iv) the formal
semantics is the one invented by Tarski that provided the first precise definition of
truth for a formal language in its metalanguage. (Dowden, 2016)

Classical logic employs symbols for predicates, subjects, and quantifiers. In propo-
sitional logic, the proposition ‘All men are mortal” is represented with just one
symbol and has no internal structure. In contrast, in classical logic one can define
a predicate M(x) to express that x is mortal or employ the universal quantifier (“For
all”): All x. M(x) to express that all x are mortal.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 45

Horn clause logic, the basis of Prolog, implements most (but not all) of predicate
logic and allows one to express both the content of substantive propositions of a
normalized version of a statutory provision as well as its logical syntax. For instance,
HLA Hart’s famous sample statutory provision, “Vehicles are not permitted in the
park,” could be expressed in Prolog (that is, Horn clause predicate logic) as:

violation(X, S) :- vehicle(X), park(S), in(X, S).

Thatis, “If X is vehicle A S is park A Xin S =X in S isviolation.” In Prolog, commas
between predicates indicate “and”; the universal quantifier is implied.
If one inputs to the Prolog program information such as:

vehicle (X) :- motorcycle (X)
vehicle (X) :- automobile (X)

the program can prove that one may not take into the park a motorcycle, an auto-
mobile, or indeed, anything else we input as qualifying as a vehicle, by chaining the
conclusion of one rule to the premise of the other.

2.3.3. Syntactic Ambiguity as Design Constraint

Before turning to an example of a large-scale legal logic program, let’s summarize
the implications of syntactic ambiguity.

Syntactic ambiguity makes the task of translating statutory texts into computa-
tionally formalized logical rules problematic (Allen and Saxon, 1987). In computa-
tionally expressed rules, syntactic ambiguity can be eliminated. The problem is that
the version of a statutory rule selected for formalization into a logic programming
language like Prolog is not necessarily the one that the legislature intended.

As a result of syntactic ambiguity, a knowledge engineer cannot be certain what
the legislature intended. The number of syntactically possible interpretations that
result from applying the normalization process to even fairly simple statutory provi-
sions can be disconcertingly large. Section 3505, a proposed limitation of the fourth
amendment exclusionary rule, stated:

Except as specifically provided by statute, evidence which is obtained as a result
of a search or seizure and which is otherwise admissible shall not be excluded in a
proceeding in a court of the United States if the search or seizure was undertaken in
a reasonable, good faith belief that it was in conformity with the fourth amendment
to the Constitution of the United States. A showing that evidence was obtained pur-
suant to and within the scope of a warrant constitutes prima facie evidence of such
a reasonable good faith belief, unless the warrant was obtained through intentional
and material misrepresentation.

Actually, Hart’s example was “A legal rule forbids you to take a vehicle into the public park” (Hart,
1958, p. 607).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

46 Computational Models of Legal Reasoning

Although just two sentences long, when normalized, section 3505 yielded 48 inter-
pretations of varying strength, as measured by their restrictiveness or inclusiveness,
based simply on the syntactic ambiguities in the provision (Allen and Saxon, 1987).

As a practical matter, only a few versions may seem clearly reasonable and other
versions may be clearly unreasonable. The question is who selects? If a knowledge
engineer decides which normalized version to implement, it is not an authoritative
choice. Legal academics or other experts in a field may express opinions about which
version the legislature intended or should have intended. The only body able to make
the selection authoritatively, however, is the legislature.

Unfortunately, the legislators were probably unaware of the ambiguity (Allen and
Saxon, 1987). While semantic ambiguity can facilitate legislative compromise and is
usually intended, syntactic ambiguity serves no legitimate function in the political
process and does not facilitate political comprise. Indeed, in laying out a systematic
procedure for generating normalized versions of statutory provisions, one of Layman
Allen’s goals was to sensitize legislators and law students to the phenomenon (Allen
and FEngholm, 1978; Allen and Saxon, 1987).

Alaw professor in Tennessee, Grayfred Gray, achieved some success in convincing
a state legislative drafting committee to adopt normalization as a means of eliminat-
ing unintended syntactic ambiguity in provisions of the State’s mental health law
provisions concerning commitment and discharge of mental patients. The Com-
mittee was concerned “that the law be clear to the people who would have to work
with it, most of whom were not lawyers” (Gray, 1985, pp. 479-80). The legislature
did not seem to have a problem with normalization. The publisher of the state’s
statutory code, on the other hand, worried that normalization’s liberal use of inden-
tation to convey statutes” simplified logical structure would take up too much space,
increasing the cost of the printed publications. Ultimately, only a few statutes were
published in normalized form.

Today, on the World Wide Web, space is not an issue. Normalized versions of
statutes and accompanying flowcharts could be published economically via the web,
making it much easier for nonlawyers to read and understand the legal require-
ments. In a web-based publication, help links and dropdown menus could assist the
uninitiated in using and interpreting the normalized provisions.

In the meantime, of course, the multiplicity of logical interpretations of statutes
has not brought the legal profession to its knees. On the contrary, it generates employ-
ment. Attorneys and legal experts representing taxpayers or insurance companies are
retained to generate and exploit alternative syntactic interpretations of complex pro-
visions. In an adversarial context, identifying alternative logical interpretations of a
statute or of a complex insurance policy provision opens the opportunity for argu-
ing for an interpretation favorable to one’s client, as in the criminal trial in State v.
Hill above.

In a different context, such as corporate compliance, risk-averse attorneys might
recommend adopting a more expansive logical interpretation of a statute to

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 47

formalize in a business rules system. Selecting a safely expansive interpretation
would help to reduce subsequent infractions of the legal rules.

From the viewpoint of cognitive computing, a system that could detect latent
syntactic ambiguities would be a nice tool for legislative drafters. Given the input
of a statutory provision in natural language, could a system automatically generate
a comprehensive listing of normalized versions or partially order them in terms of
their strength? In other words, can the normalization process of (Allen and Engholm,
1978) be automated? I am not aware of any research attempts to do so, but it seems
worth exploring.

2.3.4. The BNA Program

Marek Sergot and his colleagues successfully implemented a large portion of the
British Nationality Act (BNA) as a logic program written in Prolog (Sergot et al.,
1986). The system ran approximately 150 rules dealing with the acquisition of British
citizenship. The rules were implemented as Horn clauses in Prolog; Figure 2.4 shows
a translation of three of the rules into pseudo English.

Inputs to the BNA program were descriptions of problems involving a question of
citizenship. The program output an answer and an explanation. Asking a question
was equivalent to stating a proposition and asking Prolog to prove it. For instance,
one such proposition is:

A: Peter is a British citizen on date (16 Jan 1984) by sect. z.

Here, z is a variable standing for the number of some section of the statute that would
warrant the conclusion.

E-15) & parsan Bam e the Ueited Kingdam alar commiencemant shall be a Britah
Coticen if at the timeof birth his Father or mother i

{n]| & Bngish Cibeen, or

(h| sestled in the Linited Empdam.

Thes s represantad n the computer
Rufrd: ¥ acguires Bratish dtizenship on date ¥
urder e, 1,1
¥ ¥ el Inarny i B L)L
AND ¥owas barnan date ¥

AND ¥ i afier or an commencemens of the act
AR N has & parend who gualifled urder 1,1 om dade

Ruled: W Fas a parent who gushifies under 1.1 an date ¥
F ¥ has & parent 2
BMO T wasa Brtish citlzen on date Y

Riile3: M i g parent who guahifies under 1.1 andane ¥
¥ W has & parenl 2
Ll T was settbed in the LUK, on dabe '

FIGURE 2.4. BNA provisions as represented in rules (Sergot et al., 1986)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

48 Computational Models of Legal Reasoning

Prolog is both a programming language and theorem prover. Given A, Prolog
attempts to construct a proof that A by reasoning backward from conclusion A to
identify conditions that need to be satisfied. (Backward chaining was introduced in
Section 1.3.1.) In the process, it finds all of the rules that conclude with a proposition
of the form A. There may be a number of different rules with which to establish
conclusion A. Prolog will try them all in the order in which the rules are written.

Let’s say there is a list of n rules whose conclusions are A. If Prolog is considering
a rule r; from that list, let’s call the next rule in the list r;4,. Finally, when Prolog
is considering rule r;, if it finds a new rule whose conclusion is the antecedent of
rule r;, let’s refer to the newly found rule as rj, and call it a “descendant” of rule 7; on
a path to proving A.

Prolog will try the n rules on the list in a depth-first search order. In depth-first
search, the program follows a path from one of the r; on the list to its end, either
success or failure, before starting a new path from r;y,. In other words, if Prolog
is considering rule r;, the program always chooses to try to find a descendant r;, of
rule 7;, before moving on to the next rule on the list, ri1,. If and only if the path
from r; runs out without proving A will it move on to r,.

In contrast, in a breadth-first search, the program tries to open a path for each of
the n rules before searching for any descendants of a descendant. That is, even if a
search-based program has found a descendant for rule r; (i.e., ;,) it chooses to try to
find a descendant for each of the next rules on the list riy,, rits, . . ., 14, before trying
to find a descendant of r;,.

Fach rule will have conditions B1 ... Bn that need to be satisfied in order to con-
clude C. Remember that Prolog treats such a rule as a program: To show C, show B,
show Bz, . . ., and show Bn. For each of these Bn subproblems, Prolog solves it in one
of four ways:

1. There may be another rule whose conclusion is of the form of Bn.
2. There may be a fact satistying Bn.

3. The system can ask the user if Bn is true.

4. The system can ask an expert if Bn is true.

Figure 2.5 shows excerpts of the BNA program’s output for the question regarding
proposition A. The boldface indicates inputs from the user. Notice that the program
could answer “why” and “how” questions and explain its answers. Basically, hav-
ing constructed a proof of A or of an intermediate conclusion, it could fashion an
explanation by reiterating the inference steps in its proof.

2.3.5. Some Problems of Translating Statutes into Programs

In designing and implementing the computational model of the BNA, the designers
encountered four problems or constraints: Sometimes a previously formulated rule

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 49

15 Peter a British cinizen on date (16 Jan 1984) by cect. 27
Wihich & Peber was bown om date X 7 §3 Moy 1983]

|5 It frua that Peter was bam bn the UL T pes
Wikich % X i TatFer of Paler 7 wihy

If W is father of Peter then ¥ s a parent of Peter

IV i d parent of Peter aned ¥ = a4 British citizer on dete [3 May 12E3]
then Feter has 2 parent who qualifies under 11 on daie |3 May 1923)
Peter was bodr in the LLE

Peter was boem on dabe (3 Way 1983}

3 May 1983} iz after or on commancenant, 5o

il Pefer has & pirect whi gualifes opdess 1.1 o6 date (1 fAday 1383]
then Peter acquires British cittmenship on date (3 Fay 1983) by sect. 1.1
Peter i alive on |16 ko 1984), 5o

1T Peger scquires Beinsh cioiesdipon dare {3 ey 1953 by secl 1.1
and (16 Jam 1934] & after or an {3 Bay 1583

and ral[Peter ceases (0 be a Biiteh cibzen on dabe ¥

and ¥ Is betwesn {3 May 1983) and (1B Jan 1524]]

then Petar & 4 Brices cisen an dans (16 Jan 1984) By sact 1.

Wikich X : ¥is father of Peter ¢ WATGom
Wirich ¥ : \Willam was born on date X 7T March 19852)

15 §8 i Chat Willae was Bain b e UK, T e

15 1% truss ©hat Willlam was @ colzen of the LLE, and Colonies on date |38 Dee
156E1] 7 pes

15 it true that on date |31 Dec 29E3) Willlam had tha right of atade in the UK.
urrder the lmemigrasion Act 1971 as then inforee ¥ pes

Yo, | can confiem that

Fatmr s a Bricsh ciozen an date (16 lan 1544] by sect. 11 Bow

| deducnd Feter iz a Oriteh cittren on date (16 lon 1984) by sect. 1.3
fram the nie

FIGURE 2.5. BNA program output (excerpts) (Sergot et al., 1986, p. 376f)

or predicate needed to be reformulated. In addition, the statute’s use of negation,

default reasoning, counterfactual conditions, and open-textured terms needed to be
addressed.

Reformulation

Formalizing an extensive statute is a process of trial and error. One frequently
encounters a new context in which a previous formulation of a rule concept is inad-
equate and has to be reformulated to accommodate additional constraints imposed
by subsequent rules in the act. For instance, the researchers discovered that it is
“insufficient to conclude only that an individual is a British citizen; it is also nec-
essary to determine the section under which citizenship is acquired.” Also, a newly

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

50 Computational Models of Legal Reasoning

encountered section made evident the need for “a more explicit treatment of time”
to compute constraints that enabled one not a citizen subsequently to be registered
as one under certain circumstances (Sergot et al., 1986, p. 374). The researchers had
to change some existing rules, conditions, or parameters or add new ones to address
the new constraints.

Negation
To implement some rules in the BNA and other statutes, it would be desirable to
employ rules that state a negative conclusion (i.e., not A), such as “x was not a
British citizen at the time of y’s birth” or “x was not settled in the U.K. at the time of
y’s birth.”

Such negative conclusions require an ability to deal with ordinary or classical
negation, something that Prolog does not support. Prolog can employ only “negation
by failure.” The theorem prover uses a rule, “infer not P if fail to show P.” In other
words, if there is a finite list of ways to show A, the theorem prover will check them all.
If all of them fail, then it concludes not A. Negation by failure is adequate when one
can make the “closed world assumption” (that is, that anything which is not known
is assumed to be false).

Often, however, the closed world assumption is not reasonable. “It is notoriously
difficultin law to determine all the legal provisions that might be relevant to deciding
a particular case” (Sergot et al., 1986, p. 379). The researchers demonstrated some
formulations in the BNA where using negation by failure would be prohibitively
complex or lead the program to draw conclusions opposite from what the legislature
intended. For instance, consider the difficulty of listing all of the ways that x can be
shown to be a British citizen at the time of y’s birth.

Atheorem prover that can handle classical negation could deal with this problem
automatically, but Prolog’s theorem prover would require an extended logic, which
introduces other difficulties. As a result, the researchers simply resorted to having
the BNA program ask the user to confirm certain negative information such as that
“x was not a British citizen at the time of y’s birth” (Sergot et al., 1986, p. 381).

Default Reasoning
The authors point out that the BNA employs reasoning by default. “Conclusions
made by default in the absence of information to the contrary may have to be
withdrawn if new information is made available later” (Sergot et al., 1986, p. 381).
One example is section 1-(2) of the BNA, the provision that deals with abandoned
infants. What would happen, the authors ask, if the abandoned infant’s parents, to
whom citizenship had been conferred by default, suddenly turned up but were not
British citizens? (Sergot et al., 1986, p. 381). The BNA does not secem to have a
provision for that eventuality, but even if it did, there would be a problem.
Default reasoning is non-monotonic: propositions once proven may need to be
withdrawn in light of new facts. Predicate logic (i.e., classical first-order logic as

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 51

implemented in Prolog) is monotonic; it does not support withdrawing propositions
that have been proven.?
As discussed below, a more expressive logic is required.

Counterfactual Conditionals

Statutes also commonly make use of counterfactual conditionals such as “would
have [become a British Citizen] but for his having died or ceased to be a citizen
[by] renunciation.” The legislature may employ such a formulation as a shortcut
means of reference. “The drafters avoid listing a complicated set of conditions explic-
itly by [referring] to some other part of the legislation” from which the conditions
may be inferred (Sergot et al., 1986, p. 382).

The researchers created special rules to deal with such counterfactual
conditionals. They wrote “additional alternative rules; one set describing, for
example, the conditions for acquisition of citizenship at commencement for indi-
viduals who were alive on that date, and another set for individuals who had died
before that date, but otherwise met all the other requisite conditions before death”
(Sergot et al., 1986, p. 382).

The researchers carefully analyzed the statute to hypothesize which requirements
might reasonably apply in the counterfactual condition. This increased the number
of rules that needed to be formalized. Presumably, the legislative drafters employed
the counterfactual condition to avoid the tedious task of spelling out these conditions.
On the other hand, it is always possible that the drafters meant to leave the issue
open-ended.

In any event, it is another example where knowledge engineers are required to
make difficult interpretive decisions without legislative authority.

Open-Textured Terms

Finally, the legislature employed open-textured predicates in the statute that they
did not define. The act contains such vague phrases as “being a good character,”
“having reasonable excuse,” and “having sufficient knowledge of English” (Sergot
etal., 1986, p. 371).

The researchers adopted a straightforward approach to dealing with vague terms.
The system simply asks the user whether the term is true or not in the current inquiry.
Alternatively, they might have programmed it to assume that a particular vague con-
cept always applied (or always did not apply) and to qualify its answer based on this
assumption, for instance: “Peter is a citizen, if he is of good character” (Sergot et al.,
1986, p. 371). The researchers note that one might also apply rules of thumb, derived
from analysis of past cases where courts applied the terms, in order to reduce the
terms’ vagueness. Such heuristic rules, however, would not be guaranteed to cover
all cases, nor would they be authoritative.

% In fact, Prolog is non-monotonic, but the implementation used for the BNA program assumed that a
user had perfect information and could always answer the questions it posed (Gordon, 1987, p. 58).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

52 Computational Models of Legal Reasoning

The problems of resolving syntactic ambiguity, reformulation, negation, counter-
factual conditions, and semantic ambiguity are problems of interpreting natural
language text. Potentially, they affect any attempts to translate legislation into
runnable computer code regardless of whether humans are performing the trans-
lation manually, as in the BNA program research, or programs are extracting the
rules automatically from statutory texts as discussed in Chapter g.

2.4. THE COMPLEXITY OF STATUTORY INTERPRETATION
AND THE NEED FOR ARGUMENTS

The BNA project focused on “the limited objective of implementing rules and regu-
lations with the purpose of applying them mechanically to individual cases” (Sergot
et al., 1986, p. 372). The BNA program was never intended to simulate the output
of a court’s reasoning about a statute, but it is interesting to compare the way it gen-
erates an answer through logical deduction as illustrated in Figure 2.5 with what a
court might do.

In a landmark piece, the legal philosopher Lon Fuller demonstrated the limita-
tions of a mechanical approach to applying legal rules. Does “a truck used in World
War II” to be “mount[ed] on a pedestal in the park” and “in perfect working order”
fall afoul of the no-vehicles-in-the-park regulation? (Fuller, 1958, p. 663). Or suppose
that a municipal regulation states, “It shall be a misdemeanor, punishable by a fine
of five dollars, to sleep in any railway station.” A policeman encounters two people
in the station:

The first is a passenger who was waiting at 3 A.M. for a delayed train. When he was
arrested he was sitting upright in an orderly fashion, but was heard by the arresting
officer to be gently snoring. The second is a man who had brought a blanket and
pillow to the station and had obviously settled himself down for the night. He was
arrested, however, before he had a chance to go to sleep. (Fuller, 1958, p. 664)

According to a mechanical application of the rule, the first person violates the rule
but the second does not; the former is asleep in the railway station but the latter is
not. Given the likely purpose of the municipal regulation, however, this seems to be
exactly the wrong result. As Fuller asks, “[1]s it really ever possible to interpret a word
in a statute without knowing the aim of the statute?” (Fuller, 1958, p. 664).

The process of establishing the meaning of a statutory provision and applying it
in a concrete fact situation is commonly referred to as statutory interpretation. A law
court engages in statutory interpretation when it applies “statutes to particular cases
with a view to giving authoritative and binding decisions upon the matters in dispute
or under trial,” “forms a view as to the proper meaning of the statutes which seem
to them applicable in the case,” and articulates a “view as to the way in which the
statute should be understood” (MacCormick and Summers, 1991, p. 11f).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 53

The process of statutory interpretation involves logical deduction but is quite a bit
more complex. MacCormick and Summers identify a hierarchy of types of statutory
interpretive arguments, including:

— Linguistic: arguments from the statute’s ordinary meaning or technical meaning
(i.e., legal or domain-specific technical meaning).

— Systemic: arguments from contextual harmonization, from precedent, and by
analogy, logical-conceptual arguments, and arguments from general principles
of law and from history.

— Teleological/Evaluative: arguments from purpose and from substantive reasons.

— Transcategorical: including arguments from intention (MacCormick and
Summers, 1991, pp. 512-15).

An argument from the purpose of the municipal regulation banning sleeping in
railway stations would be an example of a teological/evaluative argument. The list
of acceptable techniques and their labels are relative to a legal system or tradition
and may be subject to debate.

2.4.1. A Stepwise Process of Statutory Interpretation

The authors organize these argument types into a simplified, nearly algorithmic
model for statutory interpretation (MacCormick and Summers, 1991, p. 531). Accord-
ing to the process, in interpreting a statutory provision, one considers three levels of
argument in the following order: (1) linguistic arguments, (2) systemic arguments,
and (3) teleological-evaluative arguments.

More specifically, the process specifies steps for making decisions based on the
arguments:

Level 1: Accept as prima facie justified a clear interpretation at level 1 unless there
is some reason to proceed to level 2;

Level 2: Where level 2 has been invoked for sufficient reason, accept as prima facie
justified a clear interpretation at level 2 unless there is reason to move to
level 3.

Level 3: If at level 3, accept as justified only the interpretation best supported by
the whole range of applicable arguments (MacCormick and Summers,
1991, - 531)-

Generally, in the above series of steps, the authors recommend that arguments
from intention and other transcategorical arguments (if any) be taken as grounds
which may be relevant for departing from the above prima facie ordering.

Given this complex description of statutory interpretation, one can appreciate
Ann Gardner’s observation that law is a “rule-guided rather than a rule-governed
activity: “T'he experts can do more with the rules than just follow them . .. (they) can
argue about the rules themselves’” (Gardner, 1985 quoted in Berman and Hafner,
1988, p. 208).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

54 Computational Models of Legal Reasoning

In order to apply the jurisprudential model of statutory interpretation in
MacCormick and Summers (1991) to a concrete scenario, one might have to inte-
grate reasoning with rules, cases, and the underlying social values and legislative
purposes. Crucially, a reasoner would need to make or consider arguments for and
against an interpretation. Every step of the interpretive process involves making and
evaluating arguments of various types. A reasoner would need to draw analogies
between a current case and past cases where courts applied the legal rule or statute
and reason with the values and purposes underlying the legal rules articulated in
the statutes and precedents. Even if one would apply the statutory rule deductively,
he/she would need to consider whether the proposed result is consistent with the
purposes and policies underlying the statute.

Although the BNA program and other programs described in Part I of this
book implement computational models of legal reasoning, none of them imple-
ments a process of statutory interpretation as comprehensive as that described in
MacCormick and Summers (1991).

Instead, the Al & Law field has invented components that could implement
parts of the process. For instance, the BNA program constructed a proof from the
plain meaning of the statute as represented by Prolog rules. Chapter 3 describes
computational models of case-based legal reasoning and considers how to take
underlying policies and values into account. Chapter 5 describes computational
models of legal argument that provide a framework into which one could imag-
ine implementing a computational process of statutory interpretation using the
MacCormick/Summers model. See, for example, a preliminary formal framework
to capture such interpretive arguments in Sartor et al. (2014).

2.4.2. Other Sources of Legal Indeterminacy

If the goal is to model arguments for purposes of statutory interpretation, however,
there is a theoretical reason why classical logical deductive methods like those in
the BNA program will not suffice. Legal adversaries frequently start with different
premises. They disagree as to the facts of the case at hand or the rules of law that apply.
In law, however, it is common to encounter reasonable arguments for inconsistent
results where the adversaries appear to agree about the facts and about which legal
rules apply. As noted, this is the phenomenon of “legal indeterminacy” (Berman and
Hafner, 1988).

One source of legal indeterminacy has already been illustrated in the Johnson
case in Section 2.2.1. Legal rules employ open-textured legal concepts about which
reasonable but contradictory arguments are made.

Another source involves unstated conditions on the rule’s application, such as that
its result not be inconsistent with certain countervailing principles.

This is illustrated in the case of Riggs v. Palmer, 115 N.Y. 506 (I889) involving an
heir who killed his grandfather under whose will he was to inherit. The Court stated,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 55

“It is quite true that statutes regulating the making, proof and effect of wills, and the
devolution of property, if literally construed, . . . give this property to the murderer.”
(Berman and Hafner, 1988).

The Court, however, refused to enforce the statutes where it would contradict
“fundamental maxims of the common law,” “dictated by public policy,” that “[n]o
one shall be permitted to profit by his own fraud, or to take advantage of his own
wrong, or to found any claim upon his own iniquity, or to acquire property by his
own crime” (Berman and Hafner, 1988).

Legal rules may have other unstated conditions such as: Does the rule satisfy
choice of law requirements? Is the rule constitutional? Conceivably, some of these
conditions can be represented as additional conditions of legal rules. Berman and
Hafner point out, however, that abstract conditions like the frequently violated
“fundamental maxim” above would be very difficult to formalize (Berman and
Hafner, 1988).

Given the reality of legal indeterminacy, Berman and Hafner argued that classical
logical models are inappropriate for modeling how lawyers reason.

Legal indeterminacy presents a direct challenge to the concept of logical validity,
by the fact that a lawyer must be able to argue for either a conclusion or its opposite.

Suppose there is a theory T which has a consequence C (i.e., there is a valid
logical argument whose premises are the axioms of T and whose conclusion is C).
We then know that C is true in every model of T; that is, C is true in every universe
where T’s axioms are all true. We also know, by the law of contradiction, that if C
is true, then NOT C must be false: so, NOT C is false in every model of T'.. . [w]e
can [also] show that no valid argument (no matter what additional assumptions we
make) that begins with the axioms of T can ever conclude NOT C.

[1]t is logically impossible to begin with a set of premises, and create a valid argu-
ment for both a conclusion and its opposite. This restriction certainly makes sense —
but in the law, such a “logical impossibility” seems to be precisely what happens!
(Berman and Hafner, 1988, p. 191).

Contradictory propositions are also problematic for classical logic models because
if both propositions are true, one can prove anything (see Carnielli and Marcos,
2001). An instructive example of this “explosive” feature of classical deduction, drawn
from the history of philosophy, is discussed in Ashworth et al. (1968, p. 184). A
sixteenth-century Italian demonstrated that “anything follows from an impossible
proposition, by proving that ‘Socrates is and Socrates is not” entails ‘Man is a horse

»

1. “Socrates is and Socrates is not implies Socrates is not.”

2. “Socrates is and Socrates is not implies Socrates is.”

3. “Socrates is implies Socrates is or Man is a horse.”

4. “(Socrates is or Man is a horse) and Socrates is not implies Man is a horse.”
Hence

5. “Socrates is and Socrates is not implies Man is a horse.”

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

56 Computational Models of Legal Reasoning

If one would like a computer to interpret statutes as a court does, by consider-
ing arguments pro and con and selecting the stronger arguments, ordinary classical
logical deduction is problematic. One needs to use something else. Logicians have
developed some alternative logics that can deal with inconsistency subject to various
constraints. In the field of Al & Law, however, the current answer to “what else is
there?” is a computational model of argument with appropriate argument schemes
as explained in Chapter s.

2.5. MANAGEMENT SYSTEMS FOR BUSINESS RULES AND PROCESSES

Not all problem-solving with statutes involves litigation to determine if a statute
has been violated. Not all reasoning with legal statutes involves complex issues of
interpretation and arguments pro and con. In many situations, businesses and insti-
tutions simply want to design their business processes and conduct their day-to-day
operations in such a way as to avoid violating the law. Surely, one can computation-
ally model legal rules for solving practical problems in a way that does not require
modeling full-scale statutory interpretation.

Indeed, most programs modeling statutes are probably designed to assist admin-
istration of institutional compliance to avoid litigation. The BNA program, for
example, was probably not designed to deal with litigation between adversaries seek-
ing to convince a judge about the meaning of a disputed term. Instead, it would
be more likely used as an administrative aid to address the run-of-the mill scenarios
involving questions of citizenship. An agency charged with administering the com-
plex BNA could use the tool to handle the large percentage of cases that are complex
enough as to befuddle civil servants but that ordinarily do not give rise to litigated
disputes about the meanings of the statutes or regulations.

Descendants of logical models of statutes like the BNA program and of legal expert
systems like Waterman’s in Section 1.3.1still play a role in helping institutions comply
with relevant regulations.

2.5.1. Business Process Expert Systems

Companies are obligated to ensure compliance with complex legal requirements
and regulations. There is always a risk that an existing business process violates a
regulatory requirement or that a proposed modification will introduce a violation
at some point. Businesses also need an ability to document compliance to auditors
(Scheer et al., 2006, p. 143). This requires firms to identify the applicable legal rules
and regulations, to “define requirements resulting from these laws for the individ-
ual company,” to identify the particular business processes that are affected and the
“concrete risks which result from these requirements within [those] processes,” to
define measures and controls to minimize those risks, and to test whether they are
being applied (Scheer et al., 2006, p. 146).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 57

One way to implement the legal-risk-reducing measures and controls is to trans-
late the legal requirements and regulations into business rules, which, if followed,
reduce the risks in the affected business processes. “In general, business rules are
guidelines or business practices which design or lead the conduct of an enterprise”
(Wagner and Klueckmann, 2006, p. 126). Once business rules have been formu-
lated, human managers can enforce them as policies via the company’s ordinary
managerial hierarchy.

The business process rules can also be implemented in software systems that assist
human managers to ensure compliance (see Scheer et al., 2006, p. v). For example,
the expert system can warn managers about the need to conform company policies to
general regulatory requirements or warn managers of specific instances of noncom-
pliant behavior. The rules can be represented in a logical formalism as in the BNA
approach or, more likely, as heuristic rules as in Waterman’s program, Section 1.3.1,
and incorporated into an expert system designed to test whether a business process
is compliant.

Such business compliance expert systems are being applied in the commercial
sector. Today, companies like Neota Logic provide technology with which law firms
and companies can easily author their own expert systems for business compliance.
For instance, the Neota website reports that the law firm, Foley & Lardner LLP, has
authored a number of web-based expert systems modules under the name, Global
Risk Solutions, to guide clients in their efforts to ensure compliance with the Foreign
Corrupt Practices Act (FCPA), a federal anti-corruption/anti-bribery statute (Neota
Logic, 2016, Case Studies).

The modules collect information from a client concerning its marketing
methods, location business volume, and customers and outputs visual and quan-
titative assessments of a client’s business risks under the FCPA.

Another module provides more specific counseling based on automated infor-
mation gathering. “For example, if a GRS user clicks through a variety of intake
questions related to meals and entertainment, they are asked questions such as
whether they are going to entertain a foreign official.” Depending on the answers, a
Foley attorney can follow-up with specific counseling.

Where the business rules are formulated in propositional form, they can also
be organized graphically in ways that are more intelligible to business personnel.
For example, propositionalized business rules can be organized in a kind of work
flowchart not unlike that shown in Figure 2.3. Since humans can readily understand
the flowcharts, they are an effective way to communicate the legal requirements to
employees and for purposes of audits. Norm graphs are another visual tool that can
assist with business compliance.

A norm graph embodies “an abstract model of the legal norms” (Dietrich et al.,
2007, p. 187). For each legal compliance result of interest, a graph is constructed,
which “enables [one] to decide whether [an] intended legal result can be reached
or not ... [It] consists of legal concepts (represented by nodes) and links between

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

58 Computational Models of Legal Reasoning

them (represented by arrows)” (Oberle et al., 2012, p. 281). The “norms determine
a legal consequence (LC), given one or more states of facts (SF)” (Dietrich et al.,
2007, p. 187).

Norm graphs are conceptually organized to support a process of subsumption,
a kind of taxonomic reasoning with an ontology, a lexicon of concepts organized
hierarchically (Oberle et al., 2012).

[T]he norms in the positive law do not address singular cases but rather cover gen-
eral classes of real-world situations. [A decision maker] faces a specific real-world
situation ... [and] must try to find the norms whose general domain covers the
situation (subsumes the situation) ... [T'Jo mechanize subsumption the semantics
must be considered ... beyond thesauri. Ontologies . .. reflect semantic relation-
ships between terms, and these relationships can particularly be defined [to] directly
support the subsumption process.” (Dietrich et al., 2007, p. 188)

The norm graphs in Figure 2.6 illustrate subsumption with legal norms. The figure
shows norm graphs for two legal conclusions involving compliance with data protec-
tion regulations, here the German Federal Data Protection Act (FDPA) concerning
the legality of data collection and effective consent:

Section 4 (1) FDPA Legality of data collection, processing, and use: The collec-
tion, processing, and use of personal data shall be lawful only if permitted
or ordered by this Act or other law, or if the data subject provided consent.
(Oberle et al., 2012, p. 285)

Section 4a (1) FDPA Effective Consent: Consent shall be given in writing unless
special circumstances warrant any other form . . . Consent shall be effective
only when based on the data subject’s free decision. Data subjects shall be
informed of the purpose of collection, processing or use and, as necessary
in the individual case, or on request, of the results of withholding consent.
(Oberle et al., 2012, p. 287)

The norm graphs have associated rules or tests represented in predicate logic,
which determine if the legal conclusions apply. For instance, the following formula
abstracts the norms in section 4a (1) FDPA Effective Consent associated with the left
side of Figure 2.6 (see Oberle et al., 2012, p. 293).

Effectiveness(E) AND givenFor(E,C) «+ (Consent(C) AND givenIn(C,F) AND
WrittenForm(F)) OR Exception(F) AND ...

This formula means that the result E of Effectiveness is assigned to Consent C if the
result F assigned to Consent C is WrittenForm or Exception and some other condi-
tions, not shown, are satisfied. Another formula specifies when the result Exception
is assigned to F.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 59

[Legal conclusion: Legality]

§ 4 (1) Legality of collecting,
processing, and using data

| |
§ 3 (4) Processing § 3 (5) Using
data data

§ 3 (1) Personal data /
| data subject

made effective consent

i

Effective? . L

. Natural #i
holds for I Information | [person | | Identlflable]
Consent? form in which given 3

Uncoerced

given by == based on .
i S

\

0

-qé s Required 3
. €3 o :o:
Subject of data s 2 information g 3 Controller

b I

Results of not l Other details l

Purpose of
collecting

E

giving consent

FIGURE 2.6. Norm graphs for concluding “Legality” in section 4 (1) FDPA and “Effective
Consent” (see Oberle et al., 2012, pp. 305-6, Figs. 13 and 14)

With rules like these, an expert system could warn managers of the require-
ments that need to be satisfied in order to conclude that a business process is in
compliance. The program could apply the tests to descriptions of real-world situa-
tions to determine if they are instances of the top-level norm classes representing the
legal conclusions of interest, that is, whether the top-level concepts subsume the fact
descriptions. For the subsumption to work, however, the factual scenarios must be
represented in particular terms provided by a taxonomy of concepts associated with

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

60 Computational Models of Legal Reasoning

— - + F3
el
N
| Client DB i
k ¥ ; —
’ : - . o "
— L= | [] ﬁ:rzmu nodog |
{ Y sy : | Destiarrmimes { !
.__. i Gat claim === Analyie cleam action ™ e data privacy ro
~— _ : Lok | and daim
ry ——
R1 n2

FIGURE 2.7. Sample BPMN diagram of simple insurance claim process with business
rule annotations (see Table 2.1) (Koetter et al., 2014, Fig. 2, p. 220)

the regulated subject matter. In other words a subject matter ontology must also be
constructed, as discussed in Section 6.5.

2.5.2. Automating Business Process Compliance

A goal of some research is to streamline the compliance process by enabling an
expert system to analyze a model of the business process directly. The inputs to such
an expert system are business process models, formal descriptions of proposed or oper-
ating business processes. These processes can be represented graphically in terms of
schematic descriptions using the Business Process Model and Notation (BPMN), a
standardized, modularized visual iconography for this purpose. The models can also
be represented in a formal rule-modeling language so that expert systems can reason
with them.

As noted, if an appropriate language for formalizing business rules is available
and if it is compatible with the language for formalizing the descriptions of the busi-
ness processes, then the business rules can be applied directly to the process model
descriptions. In effect, the business rules are used to “annotate” the process models
(and their graphical representations) in order to assess compliance.

For example, a BPMN diagram of a simplified insurance claim management pro-
cess is shown in Figure 2.7. This insurance company happens to be subject to various
requirements of the German Insurance Association (GDV) and to data protection
laws in the German Federal Data Protection Act (FDPA). A human expert has trans-
lated those requirements manually into a set of three business rules, Ri through
R3, shown in Table 2.1. The figure shows where each rule applies to the modeled
process.

First, let's examine more closely what these three business rules are and where
they came from. Human experts, knowledgeable about the business processes, need
to know which regulations apply to such an insurance claim process in the relevant
jurisdictions; here it happens to be a insurance company operating in Germany.
For instance, according to Koetter et al. (2014), at least two regulatory provisions

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning

61

TABLE 2.1. From regulatory texts to business rules to annotations of business process (see
Figure 2.7) to predicate logic forms (Koetter et al., 2014, p. 220)

Paraphrased Business rules As applied to Predicate logic form
regulations business process
GDV Code of Ru: After activity Ru: Follow this followedBy(“Receive

Conduct §§5-8:
customer who
provides personal
data must be asked
for agreement if
this data is to be
used for marketing
purposes. This
agreement has to
be solicited within
a short time span.

German company
outsourcing its
data processing
must ensure service
providers comply
with German
FDPA §4b II
sentence 1 BDSG
re processing,
storage, and
exposure of
personal data.

Receive claim an
activity asking the
claimant for
agreement has to
follow.

Ra: Activity asking
for agreement has
to be performed at
most 14 days after
activity Receive
claim.

R3: Customer
DB shall not be
hosted outside of
Germany.

by sending a data
privacy notification

Rz: Send at most
14 days after claim
is received

R3: Do not store
outside of Germany

claim,” “Send

claim and data
privacy notification”)
AND unknown

followedBy(“Receive
claim,” “Send

claim and data
privacy notification”)
AND maxTime
BetweenActivities
(“Receive claim,”
“Send claim and data
privacy notification,”
“14 days”)

hostingRegion
(“CustomerDB,”
“Germany”)

apply to the claims process in Figure 2.7. They are shown in the first column in
Table 2.1.3

The human expert would need to read the actual provisions (i.e., the GDV code
of conduct and the German FDPA provisions) and manually translate them into
paraphrases and propositions summarizing the requirements like the three business
rules shown in the second column of Table 2.1 (see Koetter et al., 2014).

3 In column 1, the paraphrases of provisions in the code of conduct of the German Insurance Association
(GDV) §§5-8, and in the German FDPA §4b II sentence 1 BDSG, are adapted from the authors’
paraphrases in Koetter et al. (2014).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

62 Computational Models of Legal Reasoning

The business rules then need to be operationalized so that they can be applied
to the specific business process model in question, perhaps with the assistance of a
business process expert. The third column presents a simplified version as applied
to the business process in Figure 2.7 (see Koetter et al., 2014).

A final step is to translate the operationalized rules, perhaps with the help of a
knowledge representation specialist, into the predicate logic form shown in column 4
so that they can be applied by an expert system.

Translating the legal requirements and regulations into business rules is a com-
plex interpretive task involving text understanding, commonsense reasoning, and
business experience. For instance, German FDPA §4b Il sentence 1 BDSG states:

1. The transfer of personal data to bodies

1. in other Member States of the European Union, . ..
shall be subject to Section 15 (1), Section 16 (1) and Sections 28 to 30a in
accordance with the laws and agreements applicable to such transfer, in so
far as transfer is effected in connection with activities which fall in part or
in their entirety within the scope of the law of the European Communities.

2. Sub-Section 1 shall apply mutatis mutandis to the transfer of personal data . . .
to other foreign, supranational or international bodies. Transfer shall not be
effected in so far as the data subject has a legitimate interest in excluding trans-
fer, in particular if an adequate level of data protection is not guaranteed at the
bodies stated in the first sentence of this sub-section.

3. The adequacy of the afforded level of protection shall be assessed in the light
of all circumstances.

4. Responsibility for the admissibility of the transfer shall rest with the body
transferring the data.#

Formalizing this provision in its entirety would be very difficult, but a human
expert would know that it is perhaps unnecessary. The expert might know from
experience that the easiest way to finesse this requirement concerning the Act’s
protections of personal data would be to avoid transferring the personal data out
of Germany. Thus, the expert would prepare a business rule (R3 in Table 2.1) as a
kind of heuristic rule of thumb to ensure that the data is processed only in Germany
(Koetter et al., 2014).

2.5.3. Requirements for a Process Compliance Language

Predicate logic alone is not adequate for the task of modeling the application of
regulatory rules to business process models. A suitable language needs to support:

1. Reasoning with defeasible legal rules.
2. Isomorphic linking from the logical rules to regulatory sources.

4 English translation from www.gesetze-im-internet.de/englisch_bdsg/englisch_bdsg.html, lastaccessed
August 6, 2016.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 63

3. Expressing the kinds of obligations that statutes and regulations employ.
4. Temporal reasoning (Gordon et al., 2009).

Each of these requirements is briefly described below.

Defeasible Legal Rules
First, the language has to support defeasible legal rules. Defeasible rules have the
property that:

When the antecedent of a rule is satisfied by the facts of a case, the conclusion of
the rule presumably holds, but is not necessarily true. (Gordon et al., 2009)

The need for defeasible legal rules arises because, “Legal rules can conflict,
namely, they lead to incompatible effects” (Gordon et al., 2009). One legal rule
may be an exception to the other or exclude it as inapplicable or otherwise under-
mine it. We have encountered this above. As Berman and Hafner observed, “the
logic-based formalism breaks down when applied to cases involving the existence of
conflicting rules and precedents” (Berman and Hafner, 1988, p. 1). In addition, as
discussed above, reasoning with legal rules often involves reasoning by default, and
such reasoning is non-monotonic. Proven propositions may have to be withdrawn,
that is, reasoning with legal rules is defeasible.

When designing business processes to ensure compliance with legal regulations,
we have assumed that modeling litigation-style arguments about conflicting rules
could be avoided. Nevertheless, according to Guido Governatori, a veteran modeler
of business process compliance, the language still needs to support “the efficient
and natural treatment of exceptions, which are a common feature in normative
reasoning” (Governatori and Shek, 2012).

For example, in Figure 2.2, compare the complex textual version of the IRC provi-
sion (IRC section 354) and the propositional form with its simplified logical structure
on the right.

Linking to Regulatory Sources for Explanation and Maintenance

Since business management systems monitor compliance, the system’s rules must
be updated, maintained, and validated and its results must be explainable with ref-
erence to the regulatory texts. These functions are simplified to the extent that the
linkages between the logical versions of the rules and their sources in the regulatory
texts are straightforward. More specifically, the legal rule modeling language needs
to support isomorphism:

There should be a one-to-one correspondence between the rules in the formal
model and the units of natural language text which express the rules in the original
legal sources, such as sections of legislation. (Gordon et al., 2009)

Ideally, the language maintains a one-to-one correspondence between the rules
in the formal model and the sections of the regulatory texts. “This entails, for

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

64 Computational Models of Legal Reasoning

example, that a general rule and separately stated exceptions, in different sections of
a statute, should not be converged into a single rule in the formal model.” (Gordon
etal., 2009).

Maintaining isomorphism makes explanation more effective. Business rule sys-
tems can explain their analyses by recapitulating the rules that “fired,” as illustrated
above in the output of the BNA system. In the context of an audit, however, explain-
ing the compliance analysis in terms of the business rules is not sufficient. An
explanation must justify it in terms of the textual statutory provisions, not simply
the business rules that a human expert has constructed to interpret and operational-
ize those provisions. For purposes of citing statutory texts and interweaving textual
excerpts, an isomorphic mapping is essential.

Isomorphic mappings between statutory text and implementing rules, however,
are difficult to maintain. Frequently, the mapping is complex especially where multi-
ple, cross-referenced provisions are involved. The versions of statutes and regulations
that computers can reason with logically are different from the authoritative textual
versions. Statutes may be so convoluted that even a “faithful representation” remains
unhelpful. As Layman Allen noted, statutes may include complex and sometimes
implicit exceptions and cross-references both within and across provisions.

The fact that statutes and regulations are dynamic complicates maintaining the
correspondence. The legislature may modify statutes or enact new ones, agencies
may revise and update regulations, and court decisions announce new interpreta-
tions of the provisions’ requirements. Even when the set of statutory provisions to
be implemented is taken as static, as discussed in Section 2.3.4, the development
of the BNA program was a process of trial-and-error requiring frequent revision to
accommodate newly encountered rules.

When regulatory texts are amended, both the textual and corresponding logical
versions need to be updated. Rule-based legal expert systems (e.g., like Waterman’s
program in Section 1.3.1) that use heuristic rules to summarize statutes avoid some
aspects of the maintenance problem, but they still need to be updated when the
statutes and regulations change. Since updating introduces modifications and addi-
tions to the rule-set, it is also important to revalidate the business rules whenever
they are introduced or modified, in part by comparing them to their sources.

Some automated techniques have been developed to maintain isomorphic repre-
sentations of regulations. The development environment in Bench-Capon (1991), for
example, maintained a complex set of linkages between textual, logical, and inter-
mediary representations of statutes. In such an environment, changes to the rules
can be undertaken in a localized fashion. The links between the textual and logical
rules can assist validation. In addition, decision aids such as textual excerpts from the
statutory rules and links to commentary and cases can be linked into the program’s
logical explanations of a conclusion. Techniques for maintaining this faithful repre-
sentation, however, require maintaining multiple representations (this development
environment had three) and require complex software to keep track of them all.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 65

Able to Express Different Types of Obligations and Reason Temporally

A language for business process compliance modeling needs to have the right
“semantics” for expressing the kinds of normative concepts that statutes and regu-
lations employ and the kinds of obligations they impose. The obligations may differ
in terms of whether it:

needs to be obeyed at all time instances in the interval in which it is in force,
— needs only to be achieved at least once while it is in force,

— could be fulfilled even before the obligation is actually in force,

— needs to be achieved immediately or else a violation is triggered,

— is such that a violation can be compensated for, or

— persists after being violated. (Hashmi et al., 2014)

A language that supports expressing these different types of obligations also needs
to be able to reason temporally. Beside how long an obligation holds, legal rules
have other temporal properties including “the time when the norm is in force and/or
has been enacted” and “the time when the norm can produce legal effects.” For a
discussion of techniques for maintaining and reasoning temporally with multiple
versions of statutory provisions (see Palmirani, 2o1m1).

2.5.4. Connecting Legal Rules and Business Processes

The Process Compliance Language (PCL) was designed to satisfy all of the above
requirements (Hashmi et al., 2014). It can represent legal rules as defeasible and
avoids the problems of reasoning with contradictory rules. It also can define obliga-
tions with the above semantics and reason temporally.

A complex business process may have a lot of moving parts, however, and compli-
ance needs to be assessed when the process is in operation. How does the model
represent a process without oversimplification so that the business rules can be
applied realistically?

For this to work, the model must account for the artifacts the business process
produces and the changes that it makes in its environment (Hashmi et al., 2014,
p- 104). The authors model a business process as a workflow-net, a kind of Petri net.
Petri nets (introduced by the German mathematician and computer scientist C.A.
Petri in 1962) are used to represent processes abstractly. Petri nets are not unlike the
ATNs in Section 1.4.2, another kind of process representation. There, the process
modeled was a legal one, the process of offer and acceptance in contract law. The
nodes in Gardner’s ATN represented states in the legal analysis; the arcs represented
the possible transitions from one state to another governed by legal rules associated
with each arc.

Petri nets are different from ATNs, however, in that they use two types of nodes,
places and transitions, with arcs connecting one type of node to the other. In addi-
tion, the production and consumption of “tokens” are used to represent the events

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

66 Computational Models of Legal Reasoning

Empty
o
o%)
> I__.- - -"'x.__-_ A LF _".I Consurme
eady L K
o B ; . < R
K“x A & S
i il
O LK prvdre e []
o L ra b .-"'
iy . /
\“‘u ral h - * i
5, b ., T A A
Generate | # ; L
W A I'\..,. -__I I"!__Iﬁrﬂdf
Eull
Producear Warehouse Consumer

FIGURE 2.8. Petri net representing simple producer—consumer resource allocation
problem (see Kafura, 2011, p. 8)

that occur in the process and the changes in the system’s state that an event causes.
In a Petri net, each event is modeled as a transition that consumes and produces
tokens, and “the state of a system is modeled at any moment by a distribution of
tokens in the net’s places” (Palanque and Bastide, 1995, p. 388).

Places and transitions are connected by directed arcs, which define when each tran-
sition is allowed to occur, and what the effect of its occurrence will be. A transition is
allowed to occur when each of its input places holds at least one token; The occur-
rence of the transition consumes a token in each input place and sets a token in
each output place. (Palanque and Bastide, 1995, p. 388)

The Petri net in Figure 2.8 represents a simple producer—consumer scenario
involving resource allocation synchronization. Rectangular nodes represent transi-
tions; circular nodes represent places. In this example, the resources are “items” that
are produced and consumed. The items may be widgets, but they may also comprise
information. A producer creates new items but may not generate a new item unless
the number of available items is less than some maximum number. The consumer
accepts one produced item at a time, but cannot accept an item unless at least one
is available.

The capacity of the warchouse in the middle of the figure constrains the max-
imum number of available items. In this example, the maximum number is five,
represented by the total number of tokens in the Full and Empty places: four in
the Empty place plus one in the Full place. Thus, the figure represents a situation
after the initial state where the producer has generated one item for the consumer to
accept as represented by the token in the Full place. The producer then generated

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 67

a new item in the Generate place and is ready to ship it to the warehouse when the
item transitions to the Ready place. The production transition, however, may only
occur (i.e., “fire”) when there is a token in the Empty place. Similarly, the accept
transition can only fire when the consumer is ready, that is, there is a token in the
consumer’s Ready place at the lower right, and at least one token in the Full place.
Once accepted, the item may be consumed.

The Petri net model of the process can be implemented in software with rules
defining the conditions for the transitions. According to the transition rules, a tran-
sition is enabled (that is, the transition can fire) “when there is at least one token
on each of the transition’s input places; when a transition fires it removes one token
from each of its input places and produces a single token on each of its output places”
(Kafura, 2011, p. 2). One could imagine variants of the transition rules that change
the maximum possible number of available items or that specify the (likely differ-
ent) numbers of items that can be produced or consumed at a time or the rates of
production and consumption.

While admittedly very simple, the Petri net in Figure 2.8 conveys an intuition
about how a complex business process can be modeled in software. Petri nets can
model nondeterministic system behavior; “If there is more than one enabled transi-
tion any one of enabled transitions may be the next one to fire” (Kafura, 2011, p. 2). A
Petri net extension, labeled workflow net, makes traces of a process’s possible execu-
tion sequences; it requires each node of process model to lie on direct path between
the sole source and end places, and labels some transitions as “visible” (Hashmi etal.,
2014, PP. 104, 111).

The traces of the business process operation generated by the labeled workflow
net can be the inputs for an expert human, or for an expert system with formalized
business rules, to analyze for compliance. The business rule obligations are associ-
ated with “each task in a trace ... [and] represent the obligations in force for that
combination of task and trace. These are among the obligations that the process has
to fulfill to comply with a given normative framework” (Hashmi et al., 2014, p. 108).
A program evaluates whether those facts, associated with the tasks and recorded in
the traces, that should be true according to the business rules really are true.

The compliance analysis can be performed at various points in the life cycle of a
business process:

Design-time: When the process is being designed, by analyzing the developing
process model in a computerized design environment that enforces compliance
with regulatory constraints a priori.

Run-time: While the process is running, by governing how the process unfolds to
ensure execution is in compliance.

Post-execution: After execution, by analyzing a trace or history of the operations of
a process to identify instances of noncompliance.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

68 Computational Models of Legal Reasoning

In order to make the determinations at design-time, run-time, or post-execution,
aworkflow net representing the business process at that point needs to be constructed
and traces of its operation need to be generated for analysis (see Hashmi et al., 2014,

p- 112).

2.5.5. Example of Business Process Compliance Modeling

Hashmi et al. (2014) applied the PCL to model regulation of a business process
for complaint handling under the Australian Telecommunication Consumers Pro-
tection Code (TCPC) 2012. The code specifically mandates that every Australian
entity operating in the telecommunication sector must certify that their day-to-day
operations comply with the code.

Specifically, they modeled TCPC § 8, which governs the management and han-
dling of consumer complaints (Hashmi et al., 2014, p. 113f). TCPC §8 was manually
mapped into “176 PCL rules, containing 223 PCL (atomic) propositions (literals)”
using all of the obligation types listed above. The authors secured the regulator’s
informal approval of the business rules for purposes of the exercise.

With the assistance of domain experts from an industry partner, they drew pro-
cess models to capture the company’s existing procedures for handling complaints
and related matters under TCPC §8. This process resulted in six business process
models, annotated in terms of the relevant business rules, five of which were small
enough to be “checked for compliance in seconds.” Evaluating compliance in the
largest business process, with 41 tasks and 12 decision points, took about 40 seconds
of computational time (Hashmi et al., 2014, p. 114).

The system outputs a report of traces, rules, and tasks responsible for noncom-
pliance like that in Figure 2.9. Although the figure deals with a different business
process for opening credit card accounts, it illustrates the kind of information the
system can generate based on its analysis of a business process’s compliance. It iden-
tifies noncompliant execution paths and cites the regulatory rule that is the source
of a noncompliance issue.

In the compliance evaluation of the complaint handling process, the team identi-
fied various points at which the business processes failed to comply with TCPC §8.
“Some of the compliance issues discovered by the tools were novel to the busi-
ness analysts and were identified as genuine non-compliance issues that need to be
resolved” (Governatori and Shek, 2012). The noncompliance issues involved ensur-
ing that “some type of information was recorded in the databases associated [with]
the processes,” that customers were made “aware of documents detailing the esca-
lation procedure,” and that “a particular activity does not happen in a part of the
process.” Two of these noncompliance issues resulted from “new requirements in
the 2012 version of the code” (Hashmi et al., 2014, p. 114).

The team employed the compliance software environment to rectify some of the
noncompliance issues. The repairs included modifying the existing processes to

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 69

| En =:_:1“"“'" “:;r: gin Furborm | ipate
:f Iln".r'-:a-rrlc-l sorirard - imivreal mech - | DG
b r s T ymIn ik | il et
[o] | | I. i
= e — —_——
A
—Y \ & 1 —4—
Bripls -I—-| Craie contred -|—-|: kl:'!;‘h—rllu I oo _u...]
O ' .{ Fldtimury chail | deauraeatatise I .'!'-:!m.n-‘l.-.- |
iz | | | | | | Anedam

| Dvarall Comglascs S1atus
Ay Process s only weakly camgliant

Mancampliant Exgoution Paths
| Start, Enger customer credit card application dataik, Send pre-contract documentation

e

Lot Wneernpensaned aligaticn = [Wasmena nos OTHgat o B recoidlAssessment]” Aure Label
NECEA 1531

'.'il

! Unfuifiied chligaticn *|&chievement, persistent, pre-emptive abigation for pagp®

FIGURE 2.9. Compliance system report of traces, rules, and tasks responsible for non-
compliance (excerpts) (see Governatori and Shek, 2012)

comply with the code or designing and adding some new business process mod-
els, such as a novel way to handle in person or by phone complaints (Governatori
and Shek, 2012; Hashmi et al., 2014, p. 114).

Governatori’s system performed real legal work in a realistic setting. It required
extensive manual effort, however, both in developing the business rules and in rep-
resenting the business process for analysis with the business rules. The formulation
of the business rules from the regulatory sources was entirely a manual effort. The
construction of the model of the business process as inputs for the business rules to
annotate appears to have been the result of an intricate manual task as well.

Governmental agencies might benefit from automating administrative process
compliance with regulations. van der Pol (2011) described a business process com-
pliance model to be fielded by the Dutch Immigration and Naturalization Service
(IND). An information system called INDiGO was to contain an expert system of
business rules based on relevant laws, regulations, and policies governing the pro-
cessing of IND clients” applications. The rule engine would contain a model of the
process workflow including the order in which business services are to be executed,
and could be consulted to provide those services relevant to a client’s specific case
and circumstances. The system was to analyze trace histories of the operations of
the business process to identify instances of noncompliance, unsatisfactory results,
or inefficiencies and provide feedback to regulators on modifying relevant statutes

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

70 Computational Models of Legal Reasoning

and regulations. The goal is to create a flexible system in which changes in law,
regulation, or procedures could be implemented quickly through modifications of
relevant business rules in this rule engine (van der Pol, 2011). After auspicious begin-
nings, however, it is not clear whether the INDIGO project has succeeded due to a
lack of published information.

2.6. REPRESENTING STATUTORY NETWORKS

Expert systems and logic programming are not the only paradigms that can support
computational reasoning with statutes and regulations. Regulatory systems con-
tained in statutes can be represented as networks or graphs of the relations between
objects. The connected objects can be other statutes and provisions, a citation net-
work, or a set of reference concepts referred to by, and subject to, regulation across
multiple statutes, a statutory network diagram.

For instance, in a recent project, states’ systems of regulations for dealing with pub-
lic health emergencies are represented as networks of nodes. The nodes represent the
agents that a statute directs to communicate with other agents under specified condi-
tions (Sweeney et al., 2014). Using expert handcrafted queries, a team of researchers
retrieved candidate statutes concerning public health emergency preparedness from
the LexisNexis legal databases for 11 US states. Each provision was manually coded
according to a standardized codebook to identify if the provision was relevant and,
if so, the provision’s citation, the public health agents that are the objects of the pro-
vision, the action the provision directs and whether it is permitted or obligatory, the
goal or product of the action, the purpose of the statute, the type of emergency in
which the direction applies, and under what time frame and conditions (Sweeney
etal., 2014).

Once different states’ regulatory systems are represented as networks, the networks
can be compared visually and quantitatively using network analytical measures, and
tentative inferences can be drawn about a state’s regulatory scheme as compared
to another state’s scheme. For example, Figure 2.10 compares statutorily mandated
institutional interactions relating to emergency surveillance between Florida and
Pennsylvania.

Comparative diagrams like these can suggest hypotheses to public health sys-
tem analysts about the differences across states, which can then be studied in light
of the legislative texts. For instance, based on the white links in Figure 2.10, one
might ask why Community Health Centers and Home Health Agencies are linked to
other public health agents in Pennsylvania but not in Florida? Investigating possible
answers would involve researching the legislative texts in Pennsylvania and Florida.

The statutory network diagrams can help. They are a kind of visual interface into
a state’s statutes. They could enable researchers or field personnel to retrieve the
provisions that direct institutional agents” interactions simply by clicking the network
links representing those interactions (Sweeney et al., 2014). Thus, a researcher could,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Statutory Reasoning 71

FIGURE 2.10. Statutory network diagram comparing Pennsylvania (PA) and Florida
(FL) statutory schemes re public health emergency surveillance: Circles indicate pub-
lic health system actors and partners in FL and PA. Grey links indicate relationships
present in both states; white links indicate legal relationships present in PA but not in FL,
(Sweeney et al., 2014)

at least, retrieve the relevant statutes directing the linkages to Community Health
Centers and Home Health Agencies in Pennsylvania. Based on those texts, one could
frame queries for similar statutes in Florida using conventional legal IR tools. The
queries will reveal either that Florida law contains similar directives that have been
missed in constructing the statutory network, or more interestingly, that there is a
gap in Florida’s laws that policy-makers might conclude should be filled.

Tools like statutory network diagrams and citation network diagrams can help
humans solve problems involving statutory reasoning where the computer and
human share responsibility for performing the tasks most within each’s capabilities.
Chapter 11 on conceptual legal information retrieval examines more closely the use
of citation networks and statutory network diagrams in cognitive computing. Citation

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

72 Computational Models of Legal Reasoning

information can be extracted automatically from statutory texts or retrieved from a
repository of statutes and used to create citation networks. Creating a statutory net-
work diagram is more complex, requiring extensive manual encoding of the statutes.
Chapter g on extracting information from statutes addresses techniques to apply ML
to automate or semiautomate the encoding task for constructing statutory network
diagrams.

In the remainder of this book, we revisit the subject matter of representing business
rules, statutes, and regulations. Section 6.5 addresses the construction of ontologies
for statutes and regulations. Standardized schemes have been developed for anno-
tating or tagging statutes and regulations with procedural and substantive semantic
information that can then be used to search for relevant provisions. Chapter g
explains how the automated approaches for extracting information from statutory
and regulatory texts can support conceptual information retrieval. Other projects,
discussed in Section 9.5, tackle the task of automatically extracting logical rules and
constraints from regulatory texts, focusing on a small set of regulations in repetitive
stereotypical forms.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning

3.1. INTRODUCTION

Since legal rules employ terms and concepts that can be vague and open-textured, a
computational model of reasoning with cases would help. Courts often interpret the
meaning of legal terms and concepts by drawing analogies across cases illustrating
how a term or concept has been applied in the past.

This chapter presents computational models of analogical reasoning with legal
cases. The models are based on three basic approaches. The first, prototypes and
deformations, focuses on how to decide a case by constructing a theory based on past
cases. The second, dimensions and legal factors, employs stereotypical patterns of
fact that strengthen or weaken a side’s argument concerning a legal claim or concept.
The third, exemplar-based explanations (EBEs), represents legal concepts in terms
of prior courts” explanations of why a concept did or did not apply.

The models illustrate how to represent legal cases so that a computer program can
reason about whether they are analogous to a case to be decided. In particular, they
illustrate ways in which a program can compare a problem and cases, select the most
relevant cases, and generate legal arguments by analogy for and against a conclusion
in a new case.

Legal rules and concepts are promulgated for normative purposes. Teleological
arguments (i.e., arguments from the purposes or values served by a rule) play an
important role in drawing legal analogies. Computational models that integrate legal
rules, intermediate legal concepts (ILCs) from those rules, and cases applying the
rules need to take underlying values into account. This chapter introduces tech-
niques for computationally modeling teleological reasoning by integrating values
into the measures of case relevance and models of legal analogy.

None of these systems deals directly with legal texts. Instead, they work on the
basis of formal representations of case facts and legal concepts that have been
manually constructed. The assumption, however, has been that one day, these case

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

74 Computational Models of Legal Reasoning

representations will be extracted automatically from natural language texts of case
opinions or fact summaries. With text analytics, that day is fast approaching. The
chapter contrasts how amenable the different case representations are to text analytic
approaches and their implications for cognitive computing.

This chapter answers the following questions: How can legal concepts be repre-
sented computationally in a way that reflects their dialectical relationship with cases?
How can cases’ facts and courts’ reasoning be represented computationally? What
are prototypes and deformations, dimensions or factors, and EBEs? What aspects of
a court’s decision do they capture, and what aspects do they miss? What is a trump-
ing counterexample? What are semantic networks and “criterial” facts? How can the
legal relevance of a case to a problem be measured computationally? How can a pro-
gram select relevant cases, compare them in terms of similarity, analogize them to,
and distinguish them from fact situations and other cases? How can such programs be
evaluated empirically? What is teleological reasoning? What roles does teleological
reasoning play in drawing analogies across legal cases? What roles do hypotheticals
play in teleological reasoning? How can values underlying legal rules be represented
computationally, and how can a computer program integrate values into its methods
for selecting relevant cases, drawing analogies, and distinguishing cases?

3.2. RELATIONSHIP OF LEGAL CONCEPTS AND CASES

Computational models of case-based legal reasoning model the interactions between
legal concepts and cases. The legal concepts correspond to the open-textured terms
in constitutional, statutory, or court-made legal rules. In common law and, to some
extent, in civil law jurisdictions, cases play a role in elucidating the meanings of the
open-textured legal concepts and in mediating the way in which those rules and
meanings change.

3.2.1. The Legal Process

Edward Levi famously contrasted the process of legal reasoning by example with
the pretense of law that it “is a system of known rules applied by a judge” (Levi,
2013, p. 1). For Levi, law involves a “moving classification scheme,” where the legal
concepts are the classifiers. “The kind of reasoning involved in the legal process
is one in which the classification changes as the classification is made. The rules
change as the rules are applied” (Levi, 2013, pp. 3-4).

In this process, courts decide whether the result of a precedent’s rule should
apply in a new case, in part by comparing the facts of the new case with those
of the precedent. In determining whether the new case is similar to or different
from a precedent, courts may elucidate but often muddy the meaning of the rule’s
legal concepts. When a concept’s meaning becomes too incoherent, a court may
introduce an exception to the rule by introducing a new legal concept, the rule

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning 75

is modified, and the process continues. Eventually, even the rule with exceptions
becomes incoherent, and a court jettisons it in favor of a new rule (Levi, 2013).

3.2.2. The Legal Process lllustrated

Levi illustrated the legal process in his recounting of the development of modern
product liability law. Strict product liability law, as modeled in Waterman’s legal
expert system (Section 1.3.1), originated in a process of case-based reasoning. Excep-
tions eroded the “privity” requirement limiting manufacturers’ liability in a series of
cases including Thomas v. Winchester, 6 N.Y. 397 (1852). The rule was replaced in
MacPherson v. Buick, 217 N.Y. 382, 111 N.E. 1050 (1916) and in the later formulation
of modern strict product liability law, for example, in the Restatement (Second) of
Torts.

As most American law students are taught, the longstanding common law rule had
been that “[a] manufacturer or supplier is never liable for negligence to a remote
purchaser” (Levi, 2013, p. 25). That is, “no privity, no liability.” There were some
exceptional fact situations where a manufacture was held liable even to a third party
despite the rule. In Thomas v. Winchester, a court announced a concept to name
the exceptions: if an item were imminently dangerous, there could be liability with-
out privity of contract. In subsequent decisions, courts classified various products as
imminently dangerous, and others not, and introduced some variations on the con-
cept, such as “inherently dangerous” or even “eminently dangerous.” After all, one
“concept sounds like another, and the jump to the second is made” (Levi, 2013, p. §).

The process of classification continued with the courts seemingly enlarging the
class of inherently dangerous articles but refusing to allow recovery for articles that
were merely dangerous if defective:

One who manufactures articles inherently dangerous, e.g., poisons, dynamite, gun-
powder, torpedoes, bottles of aerated water under pressure, is liable in tort to third
parties... On the other hand, one who manufactures articles dangerous only if
defectively made, or installed, e.g., tables, chairs, pictures or mirrors hung on the
walls, carriages, automobiles, and so on is not liable to third parties for injuries
caused by them, except in case of willful injury or fraud. Cadillac v. Johnson, 221
Fed. 801, 803. (Levi, 2013, pp. 19-20)

Eventually, these example-based classifications may come to look silly and irra-
tional, and a court throws out the rule altogether. In MacPherson v. Buick, the New
York Court of Appeals allowed plaintiff MacPherson, a third party, to recover for
injuries caused by a Buick, a type of article the Court in the previous year had clas-
sified as dangerous only if defective, denying liability in the Cadillac case. In Judge
Cardozo’s landmark opinion, the Court ruled,

If the nature of a thing is such that it is reasonably certain to place life and limb
in peril when negligently made, it is then a thing of danger. .. If to the element

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

76 Computational Models of Legal Reasoning

of danger there is added knowledge that the thing will be used by persons other
than the purchaser, and used without new tests, then, irrespective of contract, the
manufacture of this thing of danger is under a duty to make it carefully. 217 N.Y. 38q.

In 1964, the rule regarding a seller’s liability for physical harm caused by defective
products to third-party users or consumers was transformed into the modern product
liability law that Waterman modeled. See Restatement, Second, Torts §402A. Special
Liability of Seller of Products for Physical Harm to User or Consumer.

3.2.3. Role of Legal Concepts

To summarize, according to Levi, legal concepts play a number of roles. They are
components of the rules of law. They have meanings and, to some extent at least,
support deductive reasoning about whether the concept applies to a new case. The
legal process is rule-guided to some extent, but it is far from just a matter of applying
the rules deductively to new situations (Levi, 2013).

A primary role of concepts is to focus on particular similarities that, at any given
time, society deems important in making this determination of justice. A legal con-
cept is thus a “label” that reifies these similarities across a collection of cases. Courts
reason with the similarities when they decide the new case. As Levi puts it,

The problem for the law is: When will it be just to treat different cases as though they
were the same? A working legal system must . . . be willing to pick out key similarities
and to reason from them to the justice of applying a common classification. (Levi,

2013, P. 3)

In the process of deciding that certain cases are similar or different, legal rules
and their concepts change. A concept expands or contracts as courts decide that it
applies or not in new cases. In addition, the assessments of particular similarities as
relevant or irrelevant may change as social circumstances and values change. Thus,
previous analogies become suspect and lead to decisions now deemed unjust. When
the facts of cases stretch the concept’s meanings beyond credulity, a court may (sub-
ject to various constraints such as its place in the judicial hierarchy) replace it with a
new concept in a reformulated rule. Existing legal rules and the arguments in previ-
ous cases suggest new concepts for restricting, extending, or replacing existing rules
to deal with changed factual circumstances and social values (Levi, 2013) (see also
Ashley and Rissland, 2003).

A closer examination of the history of product liability law in Levi’s account iden-
tifies some features or factors courts applied in their example based on reasoning and
argument. Courts compared cases in terms of:

— Whether the manufacturer knew about the hidden defect.
— How difficult it would be to discover the defect.
— Whether the manufacturer had fraudulently hidden the defect.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning 77

— The likelihood that the article would be used by one such as the victim.

— Who had control of the article.

— How dangerous the article was.

— Whether the danger was because of some additional act.

— The nature of the injury resulting from the defect.

— Social expectations regarding reliance on the manufacturer (e.g., pharmacist,
auto manufacturer).

In the context of product liability, these are sensible criteria in terms of which
to compare cases and to assess the justness of a proposed outcome based on a rule
or interpretation of a legal concept (Ashley and Rissland, 2003). Changes in what
society wants and what technology affords affect which criteria are deemed impor-
tant. Focusing on different collections of these criteria as important leads to different
orderings of cases. The legal reasoning process (and the legal forum of which itis a
part) supports this dynamism with its use of rules, concepts, and case examples (Levi,
2013).

3.3. THREE COMPUTATIONAL MODELS OF LEGAL CONCEPTS AND CASES

Modeling case-based legal reasoning requires techniques to represent knowledge
about case facts and to assess legally relevant similarities. Since the models must
decide whether to treat cases the same way from a legal viewpoint, the similarities
and differences must be represented in a form that a program can process, analyze,
and manipulate.

Three types of computational models have been developed to represent case facts,
define relevant similarities and differences, and relate them to legal concepts and
to compare cases: prototypes and deformations, dimensions and legal factors, and
EBEs. The three models vary the mix of intensional and extensional elements they
employ to represent legal concepts. An intensional definition specifies the necessary
and sufficient conditions for being an instance of the concept. For example, a “vehi-
cle” is any instrument of conveyance used, or capable of being used, as a means
of transportation. An extensional definition simply provides examples of what is/is
not an instance of a concept. For instance, automobiles, bicycles, and a 103.1 cc
Harley-Davidson Low Rider motorcycle are examples of a “vehicle” but an inoper-
able World War Il Sherman tank is not. As explained in Chapter 5, computational
models of legal argument now incorporate aspects of these case-based models in
their schemes for analogical argumentation.

Computational models of legal reasoning approximate the process of legal reason-
ing with cases and concepts. Given the complex interaction of concepts and cases
illustrated in Levi’s examples, Al & Law researchers necessarily must simplify the pro-
cess. Specifically, the models focus on a comparatively small number of cases, for
example, 40 cases and hypotheticals involving workmen’s compensation, fewer than

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

78 Computational Models of Legal Reasoning

200 cases in trade secret law, or a half dozen property law cases involving hunters’
rights in quarry. In addition, the models all focus on an area of the law in a less
dynamic period, when the relevant concepts are more or less fixed and reasoning by
example is used to classify items as in or out of the concept (Levi, 2013, p. 9). This is
before the concept breaks down or is rejected because it obstructs a reclassification of
the cases. For instance, the trade secrets and workmen’s compensation cases involve
fairly static legal concepts. (Some interesting Al & Law work by Edwina Rissland,
however, does model and monitor conceptual change, Section 7.9.4).

Despite the constraints and simplifications, the developers try to ensure that the
resulting models are still complex enough to perform some useful tasks. The focus
has been on modeling the role of cases as exemplars of concepts and on normative
values as informing the determinations of similarity and difference.

3.3.1. Prototypes and Deformations

Thorne McCarty’s Taxman II program modeled arguments by analogy to past cases.
Legal concepts in Taxman Il were represented intensionally and supplemented
extensionally using a technique called “prototypes and deformations.”

McCarty represented three components of legal concepts: “(1) an (optional)
invariant component providing necessary conditions; (2) a set of exemplars providing
sufficient conditions; and (3) a set of transformations that express various relation-
ships among the exemplars.” He referred to the exemplars as prototypes: precedent
cases and hypotheticals that were positive and negative examples of the legal concept
whose meaning was being argued about. The transformations were deformations,
mappings that allowed prototypes to be compared in terms of their constituent con-
cepts (McCarty, 1995, p. 277, see also McCarty and Sridharan, 1981). In terms of
Levi’s domain, for instance, “imminently dangerous” might be thought of as a proto-
type concept. Groups of cases deform it into “inherently” or “eminently” dangerous,
thereby preserving a quality of danger but partially altering it given the circumstances
of particular cases.

The Eisner v. Macomber Example

The program focused on one scenario at the heart of a U.S. Supreme Court case,
Eisner v. Macomber, 252 U.S. 189 (1920) concerning the issue of whether a pro rata
stock dividend in connection with a stock split was taxable income to its shareholders
under the Sixteenth Amendmentto the U.S. Constitution. If not, it would fall outside
the Congress’s power to levy an income tax (McCarty, 1995). In the Eisner scenario,
Mrs. Macomber owned 2,200 shares of Standard Oil. When Standard Oil declared
a 50% stock dividend, she received 1,100 additional shares, part of which represented
accumulated earnings by the company.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning 79

This and related cases involved subsidiary concepts such as “distribution,”
“shares,” “bonds,” “common stock,” and “preferred stock.” For each of these, rule-
like templates represented the rights and obligations associated with the concept. For
instance, the rights of corporate interest holders specified that bondholders received
a fixed amount. Preferred stock holders received a fixed amount per share after bond-
holders. Common stock holders received a portion only of whatever is left after the
bondholders and preferred stock holders were paid.

As input, Taxman II received a description of the fact situation, expressed not in
natural language text but in terms of logic propositions employing the subsidiary
concepts. The program output “arguments” (also in propositional form) that the div-
idend was or was not income, based on analogies to two prior cases and a hypothetical
example.

At the time of the Macomber decision, these real and hypothetical cases were
three available prototypes, positive and negative exemplars of taxable income, the
main legal concept whose meaning was subject to dispute:

1. The Lynch case: Distribution of a corporation’s cash was held to be taxable
income to the shareholder.

2. The Peabody case: Distribution by a corporation to shareholders of the stock
of another corporation was held to be taxable income.

3. The Appreciation Hypothetical: Appreciation in the value of a corporation’s
stock, held by the shareholder, without transfer of the shares was universally
assumed not to be taxable income.

The deformations included some built-in mappings like ConstantStockRatio,
which compared shareholder ownership ratios before and after a distribution.

Argument as Theory Construction

McCarty characterized legal argumentation about the meaning of a legal concept
as a kind of theory construction, which he justified as follows. An arguer constructs a
theory of how to decide an issue based on aligning the current facts with prototypical
exemplars. McCarty focused on the arguments of the taxpayer and the Internal Rev-
enue Service, as reflected in those of the majority and the dissent in the Macomber
case, and designed the program to reconstruct the arguments pursuant to a template
(or scheme). According to the argument template:

Taxpayer: defines taxable income so the Eisner facts and any negative prototypes of
taxable income (the Appreciation Hypothetical) are excluded but any positive
prototypes (Lynch and Peabody) are included.

Internal Revenue Service: defines taxable income so Eisner and any positive proto-

types (Lynch and Peabody) are included but any negative prototypes of taxable
income (the Appreciation Hypothetical) are excluded.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

8o Computational Models of Legal Reasoning

In doing so, the program, in effect, searched for a theory that links the current case
with the favorable prototypes for a side (taxpayer or IRS) and excludes the unfavor-
able ones. Deformations or mappings across cases provided the raw material for these
links. If a mapping preserves some constituent concept across the positive instances
and the current case, then the invariant property becomes the basis of a theory that
they should be decided alike.

The program employed argument strategies like looking for some continuum
that could serve as an invariant property across a problem and a favorable proto-
type case. In linking the Eisner facts and the nontaxable Appreciation Hypothetical,
the program found such an invariant via the built-in ConstantStockRatio mapping:
before and after the “distribution,” the taxpayer retained the same proportionate
share of ownership of the corporation. After the dividend, Mrs. Macomber owned
3,300/750,000 of the corporation, the same ratio as before (2,200/500,000). It is as
if there were no transfer.

If the program could not find an invariant property, it would search a space of
options in trying to construct one, for example, by selecting and applying elementary
mappings to build more complex ones. In trying to find conceptual links between
prototypes, the program reasons about the meaning of their constituent components.

This appears to be similar to human argumentative reasoning. Justice Brandeis
(in dissent) proposed a continuum linking distributions of equity, debt, and cash in
support of his argument that the distribution was taxable income: Distributions of
cash, bonds, preferred stock, and common shares all confer upon the recipient an
expected return of corporate earnings. They differ only in how much return and at
what risk. If one such distribution yields taxable income, so should all.

The program examined the prototypes’ constituent concepts and, apparently, dis-
covered or constructed the same continuum from the Lynch prototype’s taxable
distribution of a corporation’s cash to distribution of a corporation’s bonds, distri-
bution of its preferred stock, and distribution of its common stock (i.e., the Eisner)
scenario. Each confers on the recipient some trade-off between expected return of
corporate earnings and risk.

Utility of Prototypes and Deformations for Cognitive Computing
From a legal viewpoint, Taxman II's model of arguing with concepts and cases
is both sophisticated and realistic. The model focused on legal argumentation as
constructing a theory by aligning selected cases in terms of a concept. Many attor-
neys, judges, and law clerks employ legal information retrieval systems to construct
arguments like these. The challenge for cognitive computing is how to design com-
puter programs that can assist users in constructing such arguments by formulating
theories, linking them to analogous positive case examples, and distinguishing them
from negative instances.

On the other hand, as a source of computational tools for achieving this goal,
McCarty’s approach in Taxman II may be too complex to be helpful. Searching

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning 81

through the intensionally defined subsidiary concepts and mappings in order to dis-
cover invariants is an intricate affair whose robustness still needs to be demonstrated
in domains involving issues other than the meaning of “taxable income.” Indeed,
the model was implemented for only one Supreme Court argument involving one
argued about legal concept and four cases.

3.3.2. Dimensions and Legal Factors

Dimensions and legal factors are knowledge representation techniques designed to
enable comparing the similarity of cases, drawing analogies to positive case instances,
and distinguishing negative ones. They provide a simpler, more extensional scheme
for representing legal concepts and cases than Taxman II that may be easier to
connect to case texts for purposes of cognitive computing.

Hypo’s Dimensions

As introduced in the Hypo program, legal “factors are a kind of expert knowledge
of the commonly observed collections of facts that tend to strengthen or weaken a
plaintiff’s argument in favor of a legal claim ” (Ashley, 1990, p. 27). “In Hypo, [legal]
factors are represented with Dimensions. A Dimension is a general framework for
recording information for the program to manipulate” (Ashley, 1990, p. 28, see also
Ashley, 1991).

As a note on terminology, “factor” has two meanings: (1) The term “factor” (lower
case) means a legal factor, the phenomenon that a dimension represents, namely a
stereotypical pattern of facts that tends to strengthen or weaken a plaintiff’s argument
in favor of a legal claim. (2) As we will see, the CATO program introduced Factors
(initial caps), a knowledge representation technique that simplified dimensions. Like
dimensions, Factors represent legal factors.

Hypo dealt with the claim of trade secret misappropriation, that is, where the
plaintiff claims defendant gained an unfair competitive advantage by using plain-
tiff’s confidential product information. It dealt with one legal concept, whether a
fact situation was an instance of trade secret misappropriation. For modeling this
concept, it employed 13 legal factors, represented by 13 dimensions, and used them
to index 30 trade secret cases.

The legal factors underlying the 13 dimensions were identified in a number of
sources including the Restatement (First) of Torts, section 757, Liability for Dis-
closure or Use of Another’s Trade Secret, which many jurisdictions adopted as an
authoritative statement of the law of trade secrets. Comment (b) identifies six factors
that courts should take into account in determining if information is a trade secret.
Other legal factors came from the opinions of trade secret cases, where courts iden-
tify particular factual strengths and weaknesses, and from treatises and law review
articles. These secondary sources tend to group cases in footnotes that illustrate the
effect on outcomes of particular factual strengths and weaknesses. They may also list

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

82 Computational Models of Legal Reasoning

Claims: Trade Secrats Misapgropriation
Prerequisites:
Thene 15 @ corporate plairtiff
Therg is a corporato defordart
Plamiill makes & peodect
Plainkiff and defendsnt compete
Plammift has produe inlodssation
Plainfiff made some deckosunes 1o pusiders
Focal Slot Prer{'q Uisite: Plaintil made some dicloiures to autsiders
Focal Slot: plaintil's Product Knowledpe: Mumber-dischasess
Range: 0to 10,000,000
Comparison TyYPe: Greater-than vorsus Less-then
Pro Plaintiff Direction: Less-than

Cronwm & Ml land-FHoss & Dats-Ceneral

L 3

0 7 5 1k filkin

FIGURE 3.1. Secrets-Disclosed-Outsiders dimension in Ashley (199o)

counterexamples where a court reaches a conclusion in spite of a particular strength
or weakness.

As illustrated in Figure 3.1, each dimension instantiated a structured template of
information that defined prerequisites for the represented legal factor’s application to
a fact scenario. Since a case may be a more or less extreme example of a legal factor,
each dimension specified a focal slot whose value in a case could vary along a range
representing a stronger or weaker magnitude for the plaintiff. For instance, the focal
slot value for the Secrets-Disclosed-Outsiders dimension represented the number of
disclosures to outsiders in a case. The focal slot value for the Competitive-Advantage
dimension captured the amount of development time and cost saved by accessing the
plaintiff’s information. Cases can be compared in terms of their magnitudes along a
dimension, that is, in terms of their focal slot values. In the figure, the Data-General
case is rather remarkable with disclosures to 6,000 outsiders.

Alegal factor’s magnitude, as represented by a dimension’s focal slot value, should
be distinguished from its weight. “A [legal] factor’s weight is some kind of measure
of the support it lends to a conclusion that the plaintiff should win a claim.” Hypo
did not represent a legal factor’s weight quantitatively. Instead, Hypo was intended
to express legal factors’ weights via arguments about specific scenarios.

One reason for not representing a legal factor’s weight numerically is that such
weights are context-sensitive. Three cases indexed along the Secrets-Disclosed-
Outsiders dimension in Figure 3.1illustrate this. The Crown and Midland-Ross cases,
both won by defendants, lie at the left end of the dimension; even a few disclosures
to outsiders can weaken a plaintiff’s claim. On the other hand, the plaintiff won in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning 83

the Data-General case despite thousands of disclosures. Clearly, that case is inconsis-
tent with the tenor of the dimension. The dimension indicates that this pro-plaintiff
case is an exception or a counterexample by its position far to the pro-defendant end
of the range. Other legal factors may counteract or “outweigh” the effect of the dis-
closures. In Data-General the disclosures were subject to confidentiality restrictions,
represented in the Outsider-Disclosures-Restricted dimension.

Beside the fact thatlegal factor weights are sensitive to the particular context, Hypo
did not represent weights for two other reasons. First, judges and attorneys do not
argue about the weight of legal factors in quantitative terms. Second, legal domain
experts do not agree what the weights are, and combining positive and negative
weights numerically obscures the need for arguing about the resolution of competing
legal factors. Chapter 4 presents ways to deal with legal factor weights for purposes
of prediction.

Analogizing and Distinguishing Cases in Hypo’s 3-Ply Arguments

The inputs to Hypo consisted of problem scenarios inputted in terms of an instanti-
ated frame for representing facts of trade secret cases. The input problem is referred
to as the current fact situation (cfs). Hypo’s outputs were a three-ply argument
in English that a plaintiff’s trade secret misappropriation claim should [not] be
successful. The three-play argument comprised:

1. An argument analogizing the cfs to a pro-plaintiff case.

2. An argument distinguishing the cited case from the cfs on behalf of defendant
and citing pro-defendant counterexamples.

3. A rebuttal distinguishing the counterexample cases from the cfs and, where
possible, a hypothetical suggesting facts to strengthen the plaintiff’s argument
in the cfs.

Hypo also made similar three-ply arguments on behalf of the defendant.

Analogizing a cfs and a cited case means stating legally relevant similarities that
give rise to reasons why they should be decided the same way. In Hypo, such similar-
ities are represented as shared dimensions. These dimensions represent legal factors
common to the cfs and cited case. If at least one of these shared dimensions favors the
side making the argument, Hypo considers the fact that the cited case was decided
for that side as potential grounds for an argument for assigning the same outcome to
the cfs.

Distinguishing a cited case is stating legally relevant differences between the cfs
and the cited case, that is, reasons why they should be decided differently. In Hypo,
such differences were represented as certain unshared dimensions: in an argument
for the plaintiff, dimensions in the cfs, but not in the cited case, that favored plaintiff,
and dimensions in the cited case, but not in the cfs, that favored the defendant. These
particular unshared dimensions give rise to reasons for deciding the cases differently.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

84 Computational Models of Legal Reasoning

Counterexamples are cases that evidence the same or similar reasons as the cited
case for deciding in favor of the side making the argument but where the opposite
outcome was reached. Counterexamples make good cases for the opponent to cite
in response.

Let’s illustrate Hypo’s arguments with the facts of a case called Mason v. Jack
Daniels Distillery, 518 So. 2d 130 (Ala. Civ. App. 1987). In 1980 Tony Mason, a restau-
rant owner, developed a recipe to ease a sore throat: Jack Daniel’s whiskey, Triple
Sec, sweet and sour mix, and 7-Up. He promoted the drink, dubbed “Lynchburg
Lemonade” for his restaurant, “Tony Mason’s, Huntsville,” served it in Mason jars,
and sold T-shirts. Mason told the recipe only to his bartenders and instructed them
not to reveal the recipe to others. The drink was only mixed out of the customers’
view. The drink comprised about one-third of the sales of alcoholic drinks. Despite
its extreme popularity, no other establishments had duplicated the drink, but experts
claimed it could easily be duplicated. In 1982, Randle, a sales representative of the
Jack Daniel’s Distillery, visited Mason’s restaurant and drank Lynchburg Lemon-
ade. Mason disclosed part of the recipe to Randle in exchange, Mason claimed,
for a promise that Mason and his band would be used in a sales promotion. Ran-
dle recalled having been under the impression that Mason’s recipe was a “secret
formula.” Randle informed his superiors of the recipe and the drink’s popularity.
Avyear later, the Distillery began using the recipe to promote the drink in a national
sales campaign. Mason was not invited to participate in the promotion nor did he
receive any other compensation, so he sued the distillery for misappropriating his
secret recipe.

An attorney with some knowledge of trade secret law would be able to identify in
the Mason facts some legal factors that favor the plaintiff and others that favor the
defendant. Plaintiff Mason adopted some security measures, F6 Security-Measures
(P).* Mason was the only restaurant preparing the Lynchburg Lemonade drink,
F15 Unique-Product (P). The defendant distillery’s sales representative knew that
the information Mason provided was confidential, F21 Knew-Info-Confidential (P).
On the other hand, Mason disclosed the information about mixing Lynchburg
Lemonade in negotiations with the distillery’s agent, F1 Disclosure-in-Negotiations
(D), and the recipe could be learned by reverse engineering the drink, Fi6 Info-
Reverse-Fngineerable (D).

Figure 3.2 shows an example of a 3-Ply Argument that Hypo could generate for
the plaintiff in the Mason case. Hypo would analogize Mason to the pro-defendant
Yokana case, then respond by distinguishing Yokana for the plaintiff and by citing
a pro-plaintiff (trumping) counterexample, the American Precision case, and finally,

' The Mason case was introduced in Aleven (1997) as an example for the CATO program, discussed
below, to analyze. CATO employed 26 Factors, numbered F1 through Fz7. (There is no Fg.) For
convenience, we will refer to Factors (and the corresponding legal factors) by number. See Table 3.1
for a complete list.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning 8s

rebut by distinguishing the counterexample on behalf of the defendant. A look at
Hypo’s model of argument will explain how such arguments would be generated.

Hypo’s Argument Model

Figure 3.3 shows the cfs (i.e., the Mason case), the Yokana case decided for the defen-
dant (D), the American Precision case won by the plaintiff (P), the legal factors that
apply in each case, and the overlap of legal factors across the cases. The intuition
underlying Hypo’s model of argument is conveyed in the Venn diagram.

As illustrated in Figure 3.3, the cfs shares pro-defendant F16 with the pro-
defendant Yokana case. In the Hypo model, this leads to an argument that the cfs
is relevantly similar to (i.c., shares a citable legal factor with) Yokana and should be
decided the same way for defendant (see Figure 3.2, top).

The plaintiff Tony Mason could respond, however, in a number of ways. First, he
could distinguish the Yokana case. It has a pro-defendant legal factor, F10, not shared
in the cfs. In other words, there is a reason to decide Yokana for defendant that does
not apply to the cfs. Similarly, the cfs has pro-plaintiff legal factors, F6, F1s, and F21
that are not in the Yokana case. Those are reasons to decide the cfs for plaintiff that
do not apply in the cited case (see Figure 3.2, middle).

Second, Tony Mason could cite a favorable precedent: In the American Precision
case, the plaintiff won where pro-plaintiff F21 applied just as in the cfs.

Third, Mason could use the American Precision case to trump the defendant’s
argument based on Yokana. In American Precision, the plaintiff won despite the appli-
cation of pro-defendant F16. The cfs is even more analogous to American Precision

=% Point far Defendant as $ide-1: [analogize casa)
WWHERE: Plunbffs product informabon could be lesrned by reverie-engreerisg
DEFERDSNT should wibn a claim fow Trade Secrecs Misaporoprisrian
CITE: pietand-Res= Cprm . Seodkdres PR E 28 A8 434 o, 19615

#= Response for Plaintf as Side-2: (distnguish case; cite counterenamples)

ogana |5 dEnngulshanie, because: in Yokana, plant® Ssciosed s product informanon 1o cUTscers
Mol ga m Maisn. In Magan, plalnd M adepbed securily readiur. Mol so i Yekana. n Aases, plamsill
e mbnalacluer making the posucl Mot s I|'r|,||.-| na, Irk Mason, |_-I||_-I|| Taml kaeiy thi
FHETTTLS I""ﬂ,lur. Fiviation @k confidennal Mol a0 n Vel

COUNTERELASPLES: American Freoson Vibramor Company, Am oy, ang Sevley Brethemitedr v
Wehona! dir \Bbratar Company 754 500W 1a 108 [Tec App.-Houshon | 151 Dist. | 1555 15 moe on post
ard Pl for PLAIMTIFF vwiwsra o sain alan e Lo it @edanda il ks mal glartiTs mdarsiarien
wa cnnbdeniial

=¥ Rebuttal for Defendant a5 Side-1: (dktngush comterexamples f pose hypotheticals
i amy] ta strengthen/weaken arpement]
A i an Prec s by divinguishalib, Becaue: in Amerhced Prechod, planmiis Pommdi drmipdoyed

durclant. bint v m: Muaosr in Wawn, plairtil
dizchmesd ity product information in negotatioe with defeufant. Mol w3 in American Preosion

bBrerught prosuct desslapmeid rformation i de

FIGURE 3.2. Hypo-style three-ply argument for the Mason case (see Ashley, 1990)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

86 Computational Models of Legal Reasoning

CASELS Yokanaz |D)
F? Brcug-Toods [R]

e FLI Seoreis Disc iosed-Ou bsiders: (0]
£ et ,.\,IH'\.\, FLE Info-fevarse-Enginserable D]
|] %
HE 3 | F-'-'m=l11.'___,_——'|——.h_q_ CASER) Amencen Precision (F]
e R " T Bir T, i
- I"'\\ .-"'?i'"" iF e F? Brought-Took (P :
.-""'.- Al T T P35 |0 ?}.(r!ﬂ:n:m "'\-I F16 inlo-fesprse-Ergineerable (0]
i Pracive |3 | F21 Emew-info-Confdential (P

| iM% . | --_,.- CASE Masan 7]

,I‘ i |F ", / S F1 Decloraun inMesntizmare (O)
- . e
LF{ \ -~ HE £ -’FE_ — Fh Stuarily-Moamiied [P}

F15 Uinkgque-Proouct |F]

B = Phal T e F1a 1 F1E Info-Sewvarse-Enginaerahla (D]
O = Delendans F21 Enim-inla-Cenfidantal |

FIGURE 3.3. Hypo argument model with Venn diagram (Ashley, 199o)

because they share a set of factors, F16 and F21; Yokana and the cfs share only a
subset of that set, namely F16. In other words, American Precision is a trumping
counterexample to Yokana (see Figure 3.2, middle).

More specifically, a counterexample is a case whose outcome is the opposite of
the cited case and which satisfies an additional constraint as follows. If the set of legal
factors a cited case shares with the cfs is a subset of the set that the counterexample
shares with the cfs, the counterexample is more on point than the cited case and
is called a trumping counterexample. If the counterexample shares the same set of
legal factors with the cfs as the cited case, it is an as-on-point counterexample. If
the counterexample shares a legal factor with the cited case and the cfs, but the
magnitude of the legal factor (the corresponding dimension’s magnitude) is stronger
for the side favored in the cited case, it is a boundary counterexample. It tends to
undermine a conclusion that the dimension favors that side.

Hypo could make all of these arguments. This example does not illustrate a bound-
ary counterexample, but if the Mason case had involved disclosures to outsiders
and defendant had relied on Secrets-Disclosed-Outsiders, plaintiff could cite the pro-
plaintiff Data General case with 6,000 disclosees as a boundary counterexample.
(Of course, in the rebuttal, Hypo would distinguish the Data General case for the
defendant by pointing out that there the disclosures to outsiders were restricted.)

Case Retrieval and Ordering in Hypo

Given an input fact situation, Hypo retrieved all cases in its database that shared a
dimension with the cfs. It then ordered the cases in terms of the overlaps of the sets
of legal factors (as represented by dimensions) the cases shared with the cfs. Hypo
organized the cases in a graph structure called a claim lattice by the inclusiveness

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning 87

e i
S i i A | Fliekfr St gk 5 |
=] Fin win b fumanewrie o P m| g By it
WP i | P 441
S e Pl i Bt L) V1 s Baeiys £ a6
=1 ! el Db’ (2] =) Nl Mgl
AR AR oy | Fadana i)
K] Dinched areby Brgmmaeon | [, Fi Dupeivs w m-iegm oo mons (i)
BB i i WLy 1A = M v iy o ba)
15 dnigasBrolarty 5 VN b e I A Tk — ¥ fnawergiereaAdeans e
Pl k), Uiy Enprarrrahly W Tl Brviwrfp Elmmywa s if Frprjnl
1 e b e B LA E RPN S ¥ | i v
T i kil i —_—————
e 3 I P dmpclos i rrg ra e
o lrprhmrwrr
L _ aiicdlag — FI5 Lo P 1y "
| Soxx Ao [N
F it o i Al
T Lk ws m-Aequramoon i o Stk faf
12 irpn Ewm b Fogprrarohie A Ammemsirdd Dperen (v
] Crama i}
Fanrr ¥ b i P i mat- o sty il
| oy A ' | —]

Tiddaa l}

FIGURE 3.4. Hypo claim lattice (Ashley, 1990)

of the sets of dimensions they shared with the problem. Figure 3.4 shows the claim
lattice Hypo could construct for the Mason cfs. The cfs is at the root. Each of the
cfs’s immediate descendants shares some subset of its applicable dimensions. Each
of their descendants shares some subset of their set of dimensions shared with the
cfs and so forth. Notice in the claim lattice that American Precision is closer to the
cfs than Yokana reflecting the trumping counterexample relationship illustrated in
Figures 3.2 and 3.3.

The Hypo model illustrates one way to computationally compare cases” similarity
and relevance. Hypo does not compare cases in terms of the numbers of dimensions
shared with the cfs. Rather, it compares them in terms of the inclusiveness of the sets
of dimensions each case shares with the cfs. In other words, Hypo compares the sets
of legal factors each case shares with the cfs and determines if one case’s set is a subset
of another case’s set. If it is a subset, the former case is less on point than the latter. In
Figure 3.4, for instance, the Digital Development case shares four dimensions with
the cfs compared with American Precision’s two, but that does not make it more on
point. Also, since American Precision’s set of dimensions shared with the cfs is not a
subset of Digital Development’s the two cases are not comparable according to the
Hypo model.

Comparing sets of dimensions makes legal sense. It approximates comparing how
well a case covers the legal strengths and weaknesses in a cfs. Comparing cases in
terms of the number of dimensions shared ignores the semantic differences among
the legal factors.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

88 Computational Models of Legal Reasoning

Two programs extended the Hypo model. CABARET applied dimensions to
reasoning with statutory rules and CATO implemented new argument templates
for downplaying or emphasizing distinctions.

Dimensions of Legal Rule Predicates in CABARET

CABARET, a first successor to Hypo, dealt with a statutory domain, in particular,
a provision of the U.S. IRC dealing with the income tax home office deduc-
tion (Rissland and Skalak, 19g1). It employed dimensions to represent stereotypical
fact patterns that strengthened or weakened a claim that a legal rule’s predicate
(e.g., “principal place of business” in the tax code provision) was satisfied.

CABARET integrated two models, one rule-based and the other case-based. The
rule-based model represented legal rules from the relevant IRS provisions and their
ILCs. Given a problem scenario, the rule-based model forward-chained from facts
to confirm goals and backward-chained from desired goals to facts needing to be
shown.

The rules were similar to those in the Waterman program (Section 1.3.1), but with
one major difference. Where the rules “ran out” (i.e., no further rules defined a statu-
tory term), the program could resort to Hypo-style case-based reasoning. Dimensions
in CABARET were associated with legal factors strengthening or weakening an argu-
ment that a statutory term was satisfied. These dimensions indexed cases in which
courts held that the statutory terms were satisfied or not.

Given a problem scenario and a statutory term, the case-based reasoning model
determined which dimensions applied, retrieved cases indexed by those dimensions,
and generated claim lattices like that illustrated in Figure 3.4 for the statutory term
that was subject to argument. The claim lattice organized past cases relevant to that
statutory term according to relevance as measured in the Hypo model.

CABARET integrated both computational models via an agenda mechanism: an
algorithm that could reason about the current state of the analysis and call either the
rule-based reasoning (RBR) or case-based reasoning (CBR) model as appropriate.
The agenda mechanism employed a set of heuristic rules to reason about the current
state of analysis. Examples of the control heuristics included:

— Try other: If CBR fails, then switch to RBR (and vice versa).

— Sanity check: Test conclusion of RBR with CBR (and vice versa).

— RBR Near-miss: If all a rule’s antecedents are established but one, use CBR
to broaden application of the rule with respect to the missing antecedent. For
example, use CBR to show that there are cases where the conclusion was true
but the rule did not fire because of the missing antecedent.

— Match statutory concepts: Find cases that failed or succeeded on the same
statutory concepts.

Figure 3.5 shows excerpts of CABARET’s analysis of a real case, Weissman v. IRS,
involving whether a CCNY Philosophy professor’s home office (two rooms and bath)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

Modeling Case-based Legal Reasoning 89

1. Taxpayer must show home offics is principal place of busines
(p=p-b): Ferform HYPO-style Dimensional Analysis on cases
Indexed under p-p-b concept. Conclude It's satisfied,

Crses

Mreniams

—_— WA e ehleT

T T T ks T
Mgk - T
elizaanc by - T
A e RSP
ST FeoT- e

fﬂﬂ-m-mmﬂﬂ!

Clerre Lafice

/,,f“"x

R - 1R

Cripic - B2
DrudessFpped - T
Hiwdn - WS
e hane -offor

=

=8

ligehe - BTH
Fzmaiseia- #5
INTTIA AT IFOVE- [N

Drucherirpeed - T

Gramkrr T
| PR RO - Do o |

2. Apply houristic contral rule; “sanity-chedk-CBR-by-RBR":
Backward chain on rule p-p-b: if taspayer dischargped "primary
responsibflity in home office” and derived "income from home
office” and there i< evidence as 1o relative Hme taxpayer spent in
home office then home office is texpayes”s "principal place of
business "

3. Rula p-p-b Is & near miss: AP antecedents satisfed but one;
whether be discharges "primary responsibility in hame office.”

4. Hewristic controd rule matches: If ABR near-miss then use CAR to
broaden rule by finding similar cases whera missing antecadent is

true.

5. Retriewve similar pro-tadpayer cases: Casewhers "primary
responstbility in home office” &5 satishied; Drucker case
6. Generate argument analagizing Drucker to Wieissman problem:
"To analogize Dracker and Welssman, consider the following
factors passessed by them in common; there wat evidence as
o the fregquency of usage of the home office by the taspayer,
the home office was necessary to perform the taspayer's
FIGURE 3.5. Example of CABARET’s process for analyzing Weissman v. IRS, 751 F. 2d
512 (2d Cir. 1984) (Rissland and Skalak, 1991)

in his 10-toom apartment qualified for a home office tax deduction under section
280A of the IRC. Professor Weissman spent only 20% of his time at the CCNY office
where it was not safe to leave equipment and materials. The IRS challenged his
home office deduction of $1,540 rent and expenses because, among other things, it
was not his “principal place of business” (p-p-b).

Directed by the control heuristics, CABARET’s analysis begins with a case-based
dimensional analysis that turns up a number of most-on-point cases citable for

the taxpayer. Then, a control heuristic leads to a “sanity check” with a rule-based

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

90 Computational Models of Legal Reasoning

analysis, in which the program identifies that the rule for concluding that the
home office was his “principal place of business” (p-p-b) nearly applied: all of its
antecedents were satisfied but one: whether the taxpayer discharges “primary respon-
sibility in home office.” Again, a control rule switches to CBR, finding a case where
the missing antecedent is satisfied, the Drucker case, which it analogizes to the cfs.

CABARET demonstrated that dimensions representing legal factors were useful
techniques for modeling a domain beside trade secret law, showed how to use dimen-
sions representing legal factors in a statutory domain, and applied the dimension and
legal factor-based approach to reasoning about concepts in legal rules.

Factors in CATO

CATO, Hypo’s second successor, simplified the dimensional representation with
Factors (Aleven, 2003). Like Hypo, CATO dealt with trade secret misappropriation
in terms of legal factors, but it did so without using dimensions to represent them.

Instead, it replaced each dimension with a corresponding binary Factor. A Factor
either applies to a scenario or it does not. It does not make use of magnitudes or
ranges, nor does it have associated prerequisites to test if a Factor applied. CATO
employed a more complete list of Factors, shown in Table 3.1, and modeled how
to downplay or emphasize a distinguishing Factor (Aleven, 1997). CATO employed
its enhanced Factors in a computerized instructional environment to help students
learn skills of case-based argument such as distinguishing. As explained in Chapter 4,
it also used Factors to predict case outcomes (Aleven, 2003).

CATO added a factor hierarchy, excerpts of which are illustrated in Figure 3.6, a
knowledge scheme for representing reasons why the presence of a Factor mattered
from a legal viewpoint (Aleven, 2003, Fig. 3, p. 192). The factor hierarchy’s reasons
explained why a Factor strengthened (or weakened) a trade secret claim.

Using these reasons, CATO could generate new kinds of legal arguments down-
playing or emphasizing distinctions, arguments that Hypo could not. It could
organize an argument citing multiple cases by issues, grouping together cases that
shared common issues with the cfs even if they did not share the same Factors. In
this way, CATO could draw analogies at a higher level of abstraction.

CATO could also downplay or emphasize distinctions. As illustrated in Figure 3.7,
if a side’s argument cites a particular distinguishing Factor in the cfs, the program
could downplay it by pointing out another Factor in the cited case that mattered for
the same reason. Alternatively, the program could emphasize the distinction by char-
acterizing the difference between the cases more abstractly based on other Factors
with common roots in the factor hierarchy.

Aleven’s algorithms for downplaying and emphasizing interacted with the infor-
mation about Factors represented in the factor hierarchy. Given a Factor-based
distinction between the cfs and a cited case, it traversed the nodes of the factor hierar-
chy upward from the distinguishing Factor to identify a focal abstraction that could
be used to draw an abstract parallel across the cases and could lead to identifying

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

€00°08€19/91E18/6/L101°0L/BJ0"10p//:5d1Y “swiiay/a103/610°bpLIquuied' mmm//:sd1iy 1e a|qe|ieae ‘asn jo

U191 2407 abpliquie) ayy 01 193[qNs ‘Z:/ 1:60 38 £10Z AON £0 UO ‘epLIoj4 40 ANSIaAIUN "8102/6.10 a6pliquied mmm//:sd1y Wwoly papeojumod

TABLE 3.1. Trade secret Factors (Aleven, 1997)

91

Factor

Meaning

Rationale

F1 Disclosure-in-negotiations (D)
F2 Bribe-employee (P)

F'3 Employee-sole-developer (D)
F4 Agreed-not-to-disclose (P)
F5 Agreementnotspecific (D)

F6 Security-measures (P)

F7 Brought-tools (P)

F8 Competitive-advantage (P)

F10 Secrets-disclosed-outsiders (D)
Fu1 Vertical-knowledge (D)

F12 Outsider-disclosures- restricted (P)
F13 Noncompetition- agreement (P)

F14 Restricted-materials-used (P)

F15 Unique-product (P)

F16 Info-reverse-engineerable (D)
F17 Info-independently-generated (D)

18 Identical-products (P)

F19 No-security-measures (D)

F20 Info-known-to-competitors (D)
F21 Knew-info-confidential (P)

F22 Invasive-techniques (P)

F23 Waiver-of-confidentiality (D)
F24 Info-obtainable-elsewhere (D)

Fz5 Info-reverse-engineered (D)
F26 Deception (P)
F27 Disclosure-in-public-forum (D)

P disclosed its product information in negotiations with D.

D paid P’s former employee to switch employment, apparently in an
attempt to induce the employee to bring P’s information.

Employee D was the sole developer of P’s product.

D entered into a nondisclosure agreement with P.

The nondisclosure agreement did not specify which information
was to be treated as confidential.

P adopted security measures.

P’s former employee brought product development information to D.

D’s access to P’s product information saved it time or expense.
P disclosed its product information to outsiders.

P’s information is about customers and suppliers (which means that it
may be available independently from customers or even in directories).

P’s disclosures to outsiders were subject to confidentiality restrictions.
P and D entered into a noncompetition agreement.

D used materials that were subject to confidentiality restrictions.
P was the only manufacturer making the product.
P’s product information could be learned by reverse-engineering.
D developed its product by independent research.

D’s product was identical to P’s.

P did not adopt any security measures.

P’s information was known to competitors.

D knew that P’s information was confidential.

D used invasive techniques to gain access to P’s information.

P entered into an agreement waiving confidentiality.

The information could be obtained from publicly available sources.

D discovered P’s information through reverse engineering.
D obtained P’s information through deception.
P disclosed its information in a public forum.

P gave his property away.
D obtained P’s property through improper means.

D should have property rights in his invention.
P takes reasonable steps to protect his property.
P did not specify in what he claims a property interest.

P takes reasonable steps to protect his property.

D steals P’s property.

P’s trade secret is valuable property.

P gave his property away.

P cannot have a property interest in its customer’s
business info.

P protects his property.

P protected against former employee’s use of
confidential information.

D used P’s property despite P’s protections.

P’s trade secret is valuable property.

P’s property interest is limited in time.

P has no property interest in information D
generated independently.

D copied P’s trade secret property.

P did not protect his property.

P cannot have property interest in something known.

D knew p claimed property interest.

D used invasive techniques to steal P’s property.

P claimed no property interest in trade secret.

P cannot have property interest in something available from

public sources.

P’s property interest is limited by time.

P was cheated of his property

P gave his property interest in the trade secret away.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

92 Computational Models of Legal Reasoning

+/ -
el T Y
L ol i b

Fi it i
PR B A

FIGURE 3.6. CATO Factor hierarchy (Aleven, 1997, 2003)

Arpumewis about the sipnificance of distiaetion Flé

< Plalmidf*s argument dewnplaying distincting FI6 in Mayen. [0 Mosan,
plainiilTs product infomsbics could be leamed by rosasi-caginoering
[Fi6], Thie was pod soom Sover, Himgsoeds, 108 B o] @ sdgmilicast
distineglon, lm Bee, plalnifl Ssadosal B picdian [Erearian i
negotimbone wiih defendsa [F1], el ploimidfwon. In both cascs, therefone.
defendmt obtaiped or could kve abinined fis information by legitimnie
meas [F120). Rt plevietidT ray still win.

= Mefendam™s argwment emphasizieg distinction Floim M In Moses,
platilil s pedadud infonesatios could b amed By iosmw-sugiiesting
[FI&], This was rdd s m Brvee. This dsstmetnn s Boghly aignificant, Tt
el This In Adasoe, praaniies inbormaniom as ivillshke fiesmn wiiinces
olllsicde plointi s Business [F U], This was sod soin Snve

FIGURE 3.7. CATO argument downplaying/emphasizing distinction (Aleven, 2003)

Factors in the other case that undercut the significance of the distinction. Another
algorithm could emphasize a distinction by finding a focal abstraction in the factor
hierarchy for abstractly contrasting the two cases. It could lead to identifying further
corroborating Factors in one case and contrasting Factors in the other case, with
which to support the distinction’s importance (Aleven, 2003, pp. 202-8).

Aleven evaluated CATO in two ways. First, he assessed its efficacy in teaching
students basic skills of case-based legal argument, as compared to being taught the
same skills by an experienced human instructor. Second, he evaluated the argument
model in terms of how successfully it predicted outcomes of cases, as discussed in

Chapter 4.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

	Cover

	Front Matter

	Artificial Intelligence and Legal Analytics: New tools for law practice inthe digital age

	Copyright, 2017

	Dedication

	Contents

	Illustrations
	Tables
	Acknowledgments
	Part I. Computational Models of Legal Reasoning

	1. Introducing AI & Law and Its Role in Future
Legal Practice

	2. Modeling Statutory Reasoning

	3. Modeling Case-based Legal Reasoning

	4. Models for Predicting Legal Outcomes

	5. Computational Models of Legal Argument

	Part II. Legal Text Analytics

	6. Representing Legal Concepts in Ontologies and
Type Systems

	7. Making Legal Information Retrieval Smarter

	8. Machine Learning with Legal Texts

	9. Extracting Information from Statutory and
Regulatory Texts

	10. Extracting Argument-Related Information from
Legal Case Texts

	Part III. Connecting Computational Reasoning Models and
Legal Texts

	11. Conceptual Legal Information Retrieval for
Cognitive Computing

	12. Cognitive Computing Legal Apps

	Glossary
	Bibliography
	Index

